

Analysis of Cascading Style Sheets

Institution:

Vienna University of Economics and Business

Institute for Management and Information Systems

Author:

Volkwin Haselbauer

Course:

Wirtschaftsinformatik-Projektseminar 4135

Prof. Rony Flatscher

Vienna, 14.06.2023

Analysis of Cascading Style Sheets I

Table of Contents

Abstract ... II

List of Figures ... III

1 Introduction ... 1

2 Definition ... 2

3 History .. 3

4 Basics of HTML ... 4

5 Syntax .. 5

5.1 Selector group .. 7

5.1.1 Selector types ... 7

5.1.2 Grouping and compounding. .. 10

5.1.3 Combinators ... 10

5.2 Properties ... 12

5.3 Values .. 12

5.4 Units .. 13

5.5 Value functions .. 14

5.6 Custom properties .. 14

6 Concepts .. 15

6.1 Cascading ... 15

6.2 Specificity ... 15

6.3 Inherence ... 16

6.4 Box Models ... 16

6.5 Layout methods ... 17

6.6 Media Queries .. 20

6.7 Accessibility... 21

7 Architecture .. 23

7.1 Implementation in HTML.. 23

7.2 Implementation in XML ... 24

7.3 Best Practices .. 24

7.4 CSS methodologies ... 25

7.5 Frameworks .. 27

8 Outlook .. 28

9 Source Index .. 29

10 Appendix .. 33

Analysis of Cascading Style Sheets II

Abstract

Cascading Style Sheets (CSS) have become an integral part of modern web

design. This thesis delves into the various aspects of CSS and its profound

impact on responsiveness and accessibility.

The paper begins by providing an overview of the fundamental syntax and

principles of CSS, exploring its selectors, properties, and concepts. A review of

existing on CSS best practices and their impact on maintainability and

scalability. It explores the application of CSS frameworks, advanced layout

techniques, and animations to create visually appealing and engaging

interfaces. The impact of CSS on responsive design is also examined, such as

media queries.

Additionally, the thesis explores the influence of CSS on user experience. It

investigates the role of CSS in improving readability and accessibility.

In conclusion, this thesis contributes to an understanding of CSS and its

potential for elevating the styling of markup language documents. It gives an

outlook of the further development of CSS.

Analysis of Cascading Style Sheets III

List of Figures

Figure 1: Syntax of a CSS rule ... 5

Figure 2: Result of the media query example .. 7

Figure 3: Example of an active hover state ... 8

Figure 4: Output of the ":first-cild" pseudo class example 9

Figure 5: Output of the "::first-letter" pseudo element example 9

Figure 6: Output of the descendant combinat example 10

Figure 7: Output of the child combinator example 11

Figure 8: Output of the sibling combinator example 11

Figure 9: Output of the next siblings combinator example 12

Figure 10: CSS Box Model ... 17

Figure 11: Output of the flexible box layout example 18

Figure 12: Output of the grid example ... 19

Figure 13: Output of the grid example with grid lines 20

Analysis of Cascading Style Sheets 1

1 Introduction

Cascading Style Sheets, short CSS, is used in nearly every website in the modern

World Wide Web (WWW) to shape its appearance („Usage Statistics of CSS for

Websites, June 2023“, o. J.). It provides an agile and powerful way to design the

web pages to adapt to different screen sizes and input types, which gets more

important with the large number of mobile devices („CSS“, 2023).

The history of CSS starting with its release in 1996 by the World Wide Web

Consortium (W3C) as CSS level 1, to the now modular CSS level 3 will most likely

not have a successor but will be updated continuously by packages(„A brief history

of CSS until 2016“, o. J.).

The basic idea and structure of CSS using selectors and properties to assign values

and thereby styles to elements of a document. Using different layout options,

selecting specific screens, color schemes and making the web accessible for bind

people, is all possible with CSS. It can be used in conjunction with Markup

languages like HTML, where its vastly used for web development. Modules, like

flexbox shifted the control of structuring the rendered document layout to CSS

(„CSS Snapshot 2023“, o. J.).

This paper aims to give an overview of the syntax of CSS, it’s concepts and the

future of it. CSS is in development since 1996 and new modules are continuously

added or improved. Therefore, an indexing of selectors, properties or other aspects

would make a static paper like this obsolete in a short amount of time. Hence the

common syntax and concepts are expounded with the help of HTML examples.

Consequently, there is no claim to completeness. This paper mostly focuses on the

use of CSS with HTML, as it was introduced for styling the web, but the

implementation with XML is also covered. For this paper a basic knowledge of

markup languages is recommended, even though the is a short introduction to

HTML.

The examples in this paper are combined into one HTML and one CSS code section,

to enable the reader to copy the code into a file and follow the examples in the

own browser.

Analysis of Cascading Style Sheets 2

As a source served, to a big part, the official documentation of the W3C for CSS

and the documentation on CSS from the Mozilla Corporation, developing company

of the web browser Firefox.

2 Definition

Cascading Style Sheets is a language to style a document written in a markup

language. Using CSS decouples the presentation of the document from its content,

allowing a separate development and makes it possible to apply styles to similar

documents, without repetition. Responsive designs, where the presentation is

different on different devices and screen sizes, can also be done with CSS.

Documents are also made accessible for people with disabilities, by optimizing it

for screen readers or braille. It was developed by the W3C to standardize the

styling of web pages, for a more accessible development and implementation in

web browsers („Cascading Style Sheets, designing for the Web – Chapter 2: CSS“,

o. J.; „CSS“, 2023; „CSS Snapshot 2023“, o. J.).

Markup languages (ML) structures the content, like text and images, of the

document and adds semantic to make it useable for computers. This is achieved

by the usage of tags and rules around them, to ultimately displaying the content

in suitable manner. Hyper Text Markup Language (HTML) is one of the most

common markup languages, with HTML documents web pages can be build. For

data storage and distribution Extensible Markup Language (XML) is used, which

has a stricter set of rules than HTML. Beside these two many more and combination

of these have emerged („Extensible Markup Language (XML)“, o. J.; „HTML: The

Markup Language (an HTML language reference)“, o. J.).

A User agent is the software that renders the document and enables the interaction

with it, for the use of the WWW these are web browsers („User Agent Accessibility

Guidelines (UAAG) 2.0“, o. J.).

The W3C further evolves CSS by having working groups develop new modules or

improve existing modules. They are first published as working draft, this can then

mature over candidate recommendations to proposed recommendations and to the

final form a W3C recommendation. Developing companies of user agents may

already implement modules that did not yet reach the W3C recommendation („W3C

Process Document“, o. J.).

Analysis of Cascading Style Sheets 3

3 History

In the early 90s the WWW consisted of plain HTML documents, how these where

displayed depended on which browser was used. There were many approaches

and different philosophies on how and who should define the appearance of the

web pages. Each browser handled the presentation different with their own style

sheet languages and customization options, to leave the styling to the users. But

authors also wanted to have a word in how their documents are displayed („A brief

history of CSS until 2016“, o. J.)

Håkon Wium Lie first proposed CSS in 1994 and further developed it with Bert Bos.

Many other styling languages emerged, but CSS solved the problem the others

could not. It enabled the author, reader, and browser to influence the style of the

web page („A brief history of CSS until 2016“, o. J.).

In 1995 the first implementation of CSS was presented on a WWW conference.

One year later the W3C released, alongside with HTML specifications, the CSS level

1 W3C Recommendation. The adaptation of browsers to support CSS fully was

started by Microsoft with the Internet Explorer 3 and others slowly following(„A

brief history of CSS until 2016“, o. J.).

In 1998 CSS level 2 was published, with updated properties and the introduction

of media types. Since 2000 there is CSS level 3, which is now updated with

modules. This means changes are smaller and modules can be adopted by the

browsers step by step („A brief history of CSS until 2016“, o. J.).

Analysis of Cascading Style Sheets 4

4 Basics of HTML

To understand the Syntax of CSS, a basic knowledge of ML is needed. Therefore,

on the example of HTML Syntax MLs are explained.

HTML is structured by elements, these elements consist of an opening tag, possible

content, and the closing tag. Specific elements, empty elements, cannot have a

content and consequently do not need a closing tag .

 <tagname>Content</tagname>

HTML elements can be nested to group and structure the document. The basic

structure of an HTML document is shown in the example code.

<!DOCTYPE html>
<html>
<head>
 <title>Document</title>
</head>
<body>
 <section>
 Content
 </section>
</body>
</html>

The “<!DOCTYPE html>” tag declares the document as a HTML document. Inside

the “html” element the “head” and “body“ elements are nested. In the “head”

element meta data, like a page title, is placed, this content will not be displayed

directly in the rendered document. The content of the “body” element will be

rendered and contains the main information of the document. Elements that are

nested in another element have a child-parent relationship, and all elements they

or the parents are nested are ancestors. The parent is also an ancestor, but the

parent’s parent is only an ancestor. If multiple elements have the same parent

element they are siblings, if they are directly after another they are also direct or

next siblings.

In the opening tag additional attributes, with or without a value, can be assigned

to the element. There are predefined attributes, but custom attributes can be

created. Important attributes for CSS use are the “id” and “class” attributes

because they can be specifically targeted. The “id” attribute is for identification of

Analysis of Cascading Style Sheets 5

one unique element, for this reason the value assigned to this attribute also must

be unique. The same “class” value can be assigned to multiple elements.

5 Syntax

The purpose of CSS is to define how elements of a document appear. To achieve

this, the browser must know what characteristic of a specific element must look

like. („Cascading Style Sheets, designing for the Web – Chapter 2: CSS“, o. J.)

CSS is used to style documents written in a ML, to achieve this there are CSS

rulesets, or simply rules, and at-rules. Generally, in CSS whitespaces and line

breaks are ignored and can be used to format the code into a readable manner.

But there are exceptions, like keywords are not allowed to be separated. Also most

parts of the rules are case-insensitive („CSS Syntax Module Level 3“, o. J.).

Rules have a group of selectors and a declarative block, in which properties are

assigned values. The group of selectors can contain one or more selectors,

separated by commas. After the selectors the declarations are wrapped in curly

brackets, these delimit the start and end of the declaration block. („CSS Syntax

Module Level 3“, o. J.)

Figure 1: Syntax of a CSS rule

A CSS declaration consists of a property and a value, they are separated by a colon

and the declaration is closed by a semicolon. In one declaration block multiple

declarations can be stated. For specific properties a set of values is allowed, if an

invalid value is given the declaration is ignored by engines.

White spaces and line breaks are ignored, and declarations are case-insensitive.

The last declaration in a block must not end with a semicolon, but it is

recommended. („Attribute Selectors - CSS“, 2023; „CSS Syntax Module Level 3“,

o. J.; „CSS WG Blog – Case-Insensitivity in CSS“, o. J.)

CSS can be directly written in the HTML element, using the “style” attribute in the

elements tag. The declarations are directly assigned as the value of the attribute,

Analysis of Cascading Style Sheets 6

no curly brackets or selectors are required, as it is already linked to the element.

(„CSS Syntax Module Level 3“, o. J.)

The “!important” flag, consisting of the “!” delimiter and the “important” keyword,

is placed between the value and the semicolon of the declaration. This marks the

declaration as important and stopping normal, not important, declaration from

overwriting it. The effect on the cascade is described in the chapter 5.1

Cascading.(„!Important - CSS“, 2023)

Beside rulesets another kind of statements are at-rules, which start with an at-

sign. After the at-sign the identifier defines the used at-rule, that can have

different syntax, semantic and transmit various information. The at-rule

continuous till it ends with a semicolon or the end of a block.

@identifier (RULE);

The syntax of the content of at-rule can be different for each identifier, it can be a

statement, a declaration block, or a rule. Using this nesting of rules conditional

styling can be applied. For example, the syntax of the “@media” rules, to show

how at-rules can be constructed, as it is also content of this thesis in a later stage

(„CSS Syntax Module Level 3“, o. J.).

 @media <media-query-list> {<stylesheet>}

Starting with the “@” sign and the keyword “media” followed by the media query

list. This can consist of specific media types and media feature expressions, which

can be brought in context with each other by logical operators. With the Module

“Media Queries Level 4” media queries made the expression syntax simpler, by

allowing comparison signs on rage features. The media query is followed by the

block of conditional rules. The rules will be applied if the media query fits the device

and media features the document is opened („CSS Syntax Module Level 3“, o. J.).

This “@media” rule applies to devices that have a screen as a media type and the

media feature of a width smaller than 500 pixels. If this is true for the user agent,

then all paragraphs are colored red, as pictured in Figure 2.

@media screen and (width < 500px) {
 p {
 color: red;
 }

Analysis of Cascading Style Sheets 7

 }

Figure 2: Result of the media query example

To use comments in the CSS code, start with slash and asterisk characters

following the content of the comment and ending with asterisk and slash

characters. They can be single or multi line. Comments can be used to add

information exclude parts of the code from being rendered by the user agent

(„Comments - CSS“, 2023).

/* Comment content */

5.1 Selector group

Selectors are used to apply a declaration block to a specific element or elements.

They prepended the declaration block. Different characteristics of elements can be

used to target it, resulting in multiple selector kinds. Operators can be used to

combinate selectors. The selectors have different specificity, more in 6.2

Specificity.

5.1.1 Selector types

The universal selector, an asterisk character, selects all elements. This can be used

to reset default values of specific properties for the whole document.

 * { <declaration> }

The Type selector selects elements by their tag name, to use this selector the tag

name is used with nothing prepended. In the example code the “” elements

are selected

 span { <declaration> }

Analysis of Cascading Style Sheets 8

Elements can be assigned with a unique ID in the ML, with the ID selector a single

element is selected. A hash character followed by the ID of the element, selects

the element with this specific ID.

 #id { <declaration> }

Class attributes can be assigned to elements in the ML, does not need to be unique.

To select a class the class name is prepended with a period character.

 .class { <declaration> }

Elements can be selected by other attributes assigned to them as well. Attribute

Selectors are written in square brackets. It is possible to select elements that have

the attributes and with the use of operators to select elements with a specific value

of the attribute.

 [attribute="value"] { <declaration> }

Pseudo classes allow selections based on a state of elements or other information,

that are not directly or hardly selectable through combination of other selectors.

There are different groups of pseudo classes depending on what aspect is selected

with it. The pseudo class starts with a colon followed by an identifier for the

proposed pseudo classes. Functional pseudo classes have brackets after the class

name for the arguments. The element that a pseudo class is connected to is the

“anchor element”.

This rule is applied to an element with the class “a”, if the hover state is active,

this is the case when the cursor is over the element, depicted in Figure 3. User

action pseudo classes change the appearance depending on the user interacting

with the document.

 .a:hover { color: red; }

Figure 3: Example of an active hover state

Analysis of Cascading Style Sheets 9

Pseudo classes allows to select elements in the document that would not be able

to be selected with other selectors and combinators, like selecting the first element

among its siblings, as in the code example below. Utilizing tree-structural pseudo

classes („Selectors Level 4“, o. J.).

 .b:first-child { color: red; }

 <div>
 <p class="b">First-child pseudo class applied</p>
 <p class="b">This is the second child</p>
 </div>

Figure 4: Output of the ":first-cild" pseudo class example

Pseudo elements, similar to pseudo classes, are not directly in the document. They

are abstracted parts of the originating element they are linked to. To style

partitions of an element or add additional content, without altering the document

tree. Pseudo-elements, denoted by double colons, provide a way to select and

style certain parts of an element, such as the first letter or line, or even generate

content itself. By utilizing pseudo-elements like ::before and ::after. Some pseudo

elements can be used with a single colon in front, as it was standard before

introduction of pseudo classes. This selector applies to the first letter of a element

with the “c” class and enables styling of it separate from the rest of the element.

 .c::first-letter { color: red; }

Figure 5: Output of the "::first-letter" pseudo element example

Analysis of Cascading Style Sheets 10

5.1.2 Grouping and compounding.

When a declaration block shall be applied to multiple selected elements, the

selectors can be grouped into a selector list by using commas to separate them. If

one of the selectors in the selector list is invalid, then the whole list would be

invalid. With separate rules only the rule with the invalid selector would be invalid

(„Selectors Level 4“, o. J.).

Selecting elements, or a single element, based on multiple conditions, the selectors

can be chained together without whitespaces, building a compound selector.

Where the elements must match each selector to match the compound selector.

When a type selector or universal selector is used it must be first in the sequence

and there can only be one of them. Whitespaces are not allowed as they are used

for the descendent combinator („Selectors Level 4“, o. J.).

5.1.3 Combinators

Combinators can be used to select more specific elements in reference to other

elements in the document.

The descendant combinator selects the elements if any ancestor is a specific

element. ancestor element is combined with the target selector by a space

character („Selectors Level 4“, o. J.). In the following code example, the selector

group matches both paragraphs.

 .ancestor p { color: red; }

 <div class="ancestor">
 <p>Descendant combinated selector applied</p>
 <div>
 <p>Descendant combinated selector also applied</p>
 </div>
 </div>

Figure 6: Output of the descendant combinat example

Analysis of Cascading Style Sheets 11

The child combinator selects the elements if the parent, direct ancestor, is a

specific element. Parent element is combined with the target selector by a greater-

than character („Selectors Level 4“, o. J.). Using the child combinator the selector

group only matches the first paragraph as it is a direct ancestor.

 .parent > p { color: red; }
 <div class="parent">
 <p>Child combinated selector applied</p>
 <div>
 <p>Child combinated selector NOT applied</p>
 </div>
 </div>

Figure 7: Output of the child combinator example

To select a sibling element, meaning both elements have the same parent element,

the sibling element is combined with the target element by a tilde character, the

subsequent sibling combinator („Selectors Level 4“, o. J.). The selector group

matches both paragraphs in the code example.

 .sibling ~ p { color: red; }

 <p class="sibling">This is the starting sibling element</p>
 <p>Sibling combinated selector applied</p>
 <p>Sibling combinated selector applied</p>

Figure 8: Output of the sibling combinator example

Analysis of Cascading Style Sheets 12

If the target element shall be the immediate sibling of another element, the next

sibling combinator, a plus character, is used to connect them and match the

element („Selectors Level 4“, o. J.). In this example, only the second paragraph

matches the selector, as its directly after the element with the “next-siblings”

element.

 .next-sibling + p { color: red; }

 <p class="next-sibling">This is the starting sibling element</p>
 <p>Next sibling combinated selector applied</p>
 <p>Next sibling combinated selector NOT applied</p>

Figure 9: Output of the next siblings combinator example

Utilizing all the selectors, compounding, and combinators every element in the

document and more can be selected to be styled. But it must be paid attention to

the specificity and cascading, further described in chapter 5 “Concepts”.

5.2 Properties

CSS Properties are the characteristics of an element that define its behavior or

style. As of May 2023 the W3C lists 574 properties from proposed to stable

properties.(„Index of CSS properties“, o. J.). Important to note that some user

agents do not support all the properties and for maximum accessibility, fallbacks

must be used in these cases („W3C Process Document“, o. J.).

5.3 Values

CSS Values are the specific measurements, colors or settings assigned to

properties, thereby defining how the element is styled and behaves („CSS Values

and Units - CSS“, 2023).

Analysis of Cascading Style Sheets 13

The property defines what values are allowed, if incorrect values are inserted the

declaration is deemed invalid and will be ignored. Some properties have special

keywords or its own syntax that must be used as the value („CSS Values and Units

- CSS“, 2023).

Properties that utilize keywords have a fix list of valid ones defined in the

recommendations. For example, properties for layouts use keywords as a value,

that describes the assigned behavior („CSS Values and Units - CSS“, 2023).

A URL can be assigned as a value inside the parentheses of the “url()” notation

(„CSS Values and Units - CSS“, 2023).

If the property is used to set a color, CSS has own color keywords. Also, the color

spaces hexadecimal RBG, RBG and HSL can be used. These color spaces can be

appended with the opacity making them the color spaces hexadecimal RGB with

transparency, RGBA and HLSA („CSS Values and Units - CSS“, 2023).

To define sizes, numbers can be combined with multiple units in CSS. Absolute

units, like pixel or millimeters, should be used with caution, as they are not

responsive. Relative units specify the size in context to another element or

characteristic. („CSS: em, px, pt, cm, in…“, o. J.).

Numbers, with decimal, or integers, without decimals, are available for specific

properties. Some Properties can also be assigned percentages that represent a

fraction of a base value („CSS Values and Units - CSS“, 2023).

5.4 Units

To give a dimension as a value, a number is appended with a unit. No whitespace

or other character is allowed between the number and unit („CSS Syntax Module

Level 3“, o. J.).

Length units are used to set the size of an element or of a part of the element.

Relative length units are in relation to something else, for example the unit “rem”

is relative to the font size of the root element. Another example is the viewport

width and height, they are 1 percent of the user agent’s size. Using relative units

to size the elements of a document, makes it accessible for a multitude of devices,

without setting specific rules for each device („CSS Values and Units - CSS“, 2023).

Analysis of Cascading Style Sheets 14

Absolute units, such as pixels (px), inches (in), and millimeters (mm), allow to

define element sizes, positions, and other dimensions with a high level of accuracy.

Unlike relative units that depend on the context or parent elements, absolute units

maintain a consistent size regardless of the device or screen resolution. This

attribute makes them particularly useful for creating designs that require precise

positioning or alignment. However, it is important to note that the use of absolute

units can present challenges when designing for different screen sizes or

accommodating users with varying accessibility needs („CSS Values and Units -

CSS“, 2023).

To define other dimensions there are also units for angle, time, frequency, flex,

and resolution („CSS Values and Units - CSS“, 2023).

5.5 Value functions

Value functions provide a way of using calculation and data processing to return a

value for a declaration. The syntax for a value function starts with the function

name followed by parenthesis, in which the argument or arguments are written.

Depending on the function arguments must be provided. As of May 2023, there

are 12 categories of value functions, like math, transformation, or filter functions

(„CSS Value Functions - CSS“, 2023).

 .value-function { font-size: max(20px, 1.5rem); }

In the example the “max()” value function is used to get the maximum value of

the comma separated list to get a minimum font size of 20 pixel.

5.6 Custom properties

Custom properties, also referred to variables, can be used to store a value and

insert the value in a declaration. They can only be used for the values of

declarations („CSS Custom Properties for Cascading Variables Module Level 1“,

o. J.).

A value can be assigned to a custom property by prepending the name of the with

two dashes, name is case-sensitive. Then like a normal property, after a colon the

value follows this the declaration is closed by a semicolon. As a value everything

can be assigned besides some characters like the semicolon. custom properties

also must be assigned inside a ruleset, and it follows the same cascading,

Analysis of Cascading Style Sheets 15

specificity, and inherence concepts as normal rulesets, see chapter “5 Concepts”.

To make a custom property available in the whole document it can be assigned in

the “:root” pseudo class, which would be the “html” element in a HTML document

(„CSS Custom Properties for Cascading Variables Module Level 1“, o. J.).

 :root{ --example-color: #ff0000 }

To insert the value of a custom property as a value for a CSS property the “var()”

value function is utilized. As an argument for the value function the custom

property name including the double dashes is inserted. A second argument,

separated by a comma a fallback can be included („CSS Custom Properties for

Cascading Variables Module Level 1“, o. J.).

 .variable-color { color: var(--example-color); }

6 Concepts

6.1 Cascading

Before CSS there was a dispute on who should determent the design of the web.

Should the user agent, the author, or the user style the web. This is where the

Concept of cascading steps in. The user agent has a default style sheet, which can

be overruled by the styles a user wants to apply. The rules of the author are

overruling both other origins. This would give the author full control over the

design and completely neglect any choice of the user and user agent. Therefore,

the order is reversed for statements with the “!important” flag, giving the user a

say in how the document is ultimately displayed („CSS Cascading and Inheritance

Level 4“, o. J.).

6.2 Specificity

The selectors used also have another influence than just selecting an element,

they are ranked in specificity and define which ruleset is applied. The most specific

style is the style attribute, inline styles , it is always applied if it exists. After this

the Specificity is in descending order the ID selector, class selector and the element

selector. If multiple rules with the same specificity are in the same origin, then the

last ruleset is used („Specificity - CSS“, 2023).

Analysis of Cascading Style Sheets 16

6.3 Inherence

To make the styling of documents more structured some values are inherent from

the ancestor elements. For example, if the font of the whole document has to be

changed, it’s not needed to select all elements with text, but the body element can

be selected and all elements with text will inherent the font. This inherence of

styling does not apply to all properties to mitigate unwanted behavior („CSS

Cascading and Inheritance Level 4“, o. J.).

6.4 Box Models

The Box model defines how elements are sized and occupy space. Every element

is displayed as a rectangle, consisting of four layers: content, padding, border, and

margin. In the middle is the content of the element, like text or images. The

padding is the space between the content and the border of the element. The space

around the border, separating the element from other elements is the margin. the

three components around the content can each be manipulated by different

properties and all sides can be set independently („CSS Box Model Module Level 3“,

o. J.).

With the box-sizing property we can change how the height and width of the

element is calculated. The standard is the content box but there is also the padding

box, border box and margin box. The difference between them is what is contained

inside the defined size. For example, the width of the border box contains the

content, padding and border but not the margin. This makes it possible to size the

elements correctly without the need to calculate the other components of the box

model („CSS Box Model Module Level 3“, o. J.).

Analysis of Cascading Style Sheets 17

Figure 10: CSS Box Model

6.5 Layout methods

To arrange the elements of the document, in the desired way, there are different

layout options. In the past the layout was a big part of the ML, where order and

grouping were defined. With the newer CSS modules these options are now

available in CSS and shifting more appearance decisions away from the content.

These old layout options, like float and HTML tables, are now legacy method to

style the appearance of a document („CSS Layout - Learn Web Development | MDN“,

2023; „Introduction to CSS Layout - Learn Web Development | MDN“, 2023).

For western languages where the writing flow is left to right then top to bottom,

the block directions is vertical, the inline direction is horizontal. When languages

with a vertical writing mode is displayed, like Chinese, then the directions are

reversed. The normal flow is the default behavior of the elements, lining them up

one after another, in the block direction. To make them line up in the inline

direction the elements can be assigned the “inline” value to the “display” property

(„Block and Inline Layout in Normal Flow - CSS“, 2023).

With the CSS modules for Flex Layout Box and Grid, the display property to change

to the layout method is now assigned to the parent element rather than each

element. Meaning the element itself is not defining how it is displayed, which made

Analysis of Cascading Style Sheets 18

these systems possible and easily useable („Introduction to CSS Layout - Learn Web

Development | MDN“, 2023).

Flex layout box is a powerful and flexible CSS layout module designed for one-

dimensional layouts, either horizontally or vertically. It allows easy alignment,

distribution, and reordering of elements within a container. Flex layout box

provides properties to control the positioning, spacing, and alignment of

elements across the main and cross axis. It is well-suited for building navigation

bars, card layouts, and flexible content containers and simplifies the creation of

responsive layouts („Basic Concepts of Flexbox - CSS“, 2023; „CSS Flexible Box

Layout Module Level 1“, o. J.). In the code example the outer element is assigned

a “display”-value of “flex” to initialize the flex layout box. The default direction is

horizontal, named “row”. With the “justify-content” the child elements, the flex

items, are positioned on the start of the main axis. The “align-items” property

places the items in the center of the cross axis. This is displayed in the Figure 11.

 .flex-container {
 display: flex;
 justify-content: start;
 align-items: center;
 }

 <div class="flex-container">
 <div class="flex-item"></div>
 <div class="flex-item"></div>
 </div>

Figure 11: Output of the flexible box layout example

The CSS grid is still only a candidate recommendation of the W3C, but already

supported by the major user agents. It divides the element in rows and columns

to create the grid structure where the children can be positioned. The grid can be

Analysis of Cascading Style Sheets 19

defined by counts of columns or rows, and also by assigning specific grid areas.

How the children are aligned in the grid field can be defined for the hole grid and

specific for each child element. The child elements can span over multiple row

and columns, make the CSS grid a versatile layout system with predictable

behavior and responsiveness. Further separating the appearance of the

document from the content, by removing the need of tags for additional

grouping of elements („CSS Grid Layout - CSS“, 2023; „CSS Grid Layout Module

Level 2“, o. J.). In the following example a grid with 2 columns is defined and the

content of the grid fields is centered. The grid items are automatically placed in

the grid fields. The last grid item is set to span over to grid columns. Figure 12

shows how the grid is rendered, in Figure 13 the grid lines are visible.

 .grid-container {
 display: grid
 grid-template-columns: 1fr 1fr;
 justify-items: center;
 align-items: center;

 .grid-item-wide {
 grid-column: span 2;
 }

 <div class="grid-container">
 <p>This is not a wide grid field</p>
 <p>Another grid field</p>
 <p class="grid-item-wide">This is a wide grid field</p>
 </div>

Figure 12: Output of the grid example

Analysis of Cascading Style Sheets 20

Figure 13: Output of the grid example with grid lines

With these two modules and the normal flow of the documents, complex

illustrations of documents can be achieved, leaving out complex document

structures. They are not a substitute for each other and should be used in

conjunction with each other, as each method has its own advantages,

disadvantages, and applications.

6.6 Media Queries

In CSS level 2 with media types, it was possible to define different styles to output

media types. CSS level 3 extended this concept by also filtering the different

characteristics and capabilities of the devices, by introducing the media queries.

With them it’s possible to adapt the style to the individual screen sizes, resolutions,

and other. Making it a popular technique for responsive designs. This approach

eliminates the need for separate websites or stylesheets for different devices and

enables a single codebase to cater to diverse devices („Media Queries - CSS“, 2023;

„Media Queries Level 5“, o. J.).

As described in the chapter “5 Syntax”, the media query starts with the “@” sign

follow by the identifier “media”. Then a media type can be selected and a media

feature expressions can follow. Logical operator can also be used to build the

desired query („Media Queries Level 5“, o. J.).

The media query is only true if the media type and the media expressions are all

matching the device. Only then the rulesets in the media query will be applied to

the document.

Media queries also enable the concept of breakpoints, which are specific screen

sizes at which the layout or styles change. By defining breakpoints and adjusting

the design accordingly, the document can smoothly adapt to different screen sizes.

Analysis of Cascading Style Sheets 21

6.7 Accessibility

The Web is fundamentally designed to work for all people,

whatever their hardware, software, language, location, or ability.

When the Web meets this goal, it is accessible to people with a

diverse range of hearing, movement, sight, and cognitive ability.

(„Accessibility - W3C“, o. J.)

Accessibility means the making the document usable for all users, with all kinds of

limitations. ML are semantic and therefore a good basis for accessibility and CSS

can assist, making them even more inclusive.

In the document we can define alternative content for images, videos, and audio.

For images an alternative text can be defined if it’s not solely for decorations

purposes. This gives visually impaired who rely on a screen reader and people with

devices without the possibility of displaying images, to still gain the full information

of the document. Subtitling videos makes it accessible for users not able to hear

the audio, visitors with hearing problems or others not being able to play the audio.

Both videos and audio should also be accompanied by a transcription

(„Accessibility - W3C“, o. J.). Modern search engines take the accessibility of

websites in account when ranking them, nudging developers to build inclusive

websites (Moreno & Martinez, 2013).

Besides making the content itself accessible there are also style considerations to

make. The colors of the text and the background must have a significant contrast

between each other, making the text easy to read for all users. The standard

luminosity contrast ration between foreground and background should be at

minimum 4.5:1 („Understanding Success Criterion 1.4.3: Contrast (Minimum) |

WAI | W3C“, o. J.).

Using relative units to define the font size has the advantage over absolute units

that the user settings can be respected, by referencing to the user’s preferences.

To set the font size percentages can be used as they reference to the parent. The

unit “em” is the size of the font, inherited by the parent element. Both can get

complicated to use if they are nested with lots of changes in font sizes. The “rem”

unit soles this problem, it is relative to the root font size. If a user changes his

settings to a bigger font size to make reading easier, then the document, using

relative font sizes adapts to this preference. Another characteristic making reading

Analysis of Cascading Style Sheets 22

of a text more pleasant besides font size is the width of the text. A paragraph

wider than around 60 to 70 characters makes it harder for the reader to skip to

the next line. For good accessibility the text should be comfortable to read and

adapt user preferences („Accessibility - W3C“, o. J.).

For users that are not able to use the mouse and must rely on the navigation via

keyboard, elements that are focused must be marked to be easily

identified(„Accessibility - W3C“, o. J.).

Some users may prefer the website without many animations because it could

make them feel uncomfortable or trigger other unwanted reactions. Media queries

can be used with the media feature “prefers-reduced-motion” to apply styles to

the document that does not utilize animations, that are not necessary

(„Accessibility - W3C“, o. J.).

Beside accessibility for users with disabilities, accessibility concerns users with

different devices. This was already attended in the section “6.6 Media Queries”.

Implementation of these CSS techniques significantly contribute to improving the

accessibility of documents, ensuring that they are usable and inclusive for all users.

Adhering to accessibility guidelines and standards such as the Web Content

Accessibility Guidelines (WCAG) is essential to provide an inclusive user

experience.

Analysis of Cascading Style Sheets 23

7 Architecture

CSS Architecture refers to the organization, structure, and integration of CSS code

and stylesheets. A well-designed CSS architecture promotes maintainability,

scalability, and code reusability, making it easier to manage and update styles

across coherent documents.

7.1 Implementation in HTML

In HTML there are three ways to implement CSS:

• Inline style

• Internal CSS

• External CSS

The inline style is directly written in the HTML element as a “style” attribute and

the declarations as its value. As it is inside the element there is no need for a

selector, making the inline styles also the most specific styling. It is not possible

to use @-rules and therefore also no media queries with inline styles. This method

of using CSS is bad practice because its neglects a basic idea of CSS, separation

between content and styling. Code may be repeated often, making maintenance

and changes of the styling more time consuming. Sometimes it has to be used

when changing the styling of out of the box solutions, where the CSS file is not

editable („How CSS Is Structured - Learn Web Development | MDN“, 2023).

For internal CSS, or embedded CSS, the CSS code is in the HTML document but

not at each element, like with inline style. Between the “<head>” tags of the HTML

document a “<style>” element contains the CSS code, with full possible use of

rulesets and @-rules. However, if multiple documents utilize the same styling the

CSS will repeat again, making this only a suitable option if it’s a single page with

this styling. Else similar problems with maintaining as with inline styles emerge.

Again, if the CSS file cannot be edited, this may be a valid option („How CSS Is

Structured - Learn Web Development | MDN“, 2023)..

External CSS contains all the CSS code in a different file, a “.css” file. It is possible

to link one CSS file to multiple HTML document, but also linking multiple CSS files

to HTML documents. With a “<link>” element in the “<head>” element we can

reference the CSS. The relation attribute “rel” the specifies that a stylesheet is

linked, the hypertext reference attribute “href “ provides the path to the stylesheet.

Analysis of Cascading Style Sheets 24

This implementation of CSS in HTML is normally the most valid option if no other

limitations apply. This makes it possible to reduce repetitive code and simplify the

changes and maintenance of the styling. While still being able to split specific code

for single documents. („How CSS Is Structured - Learn Web Development | MDN“,

2023)

<link rel="stylesheet" href="/stylesheet.css">

7.2 Implementation in XML

CSS can be implemented in XML, but its own style sheet language with XSL, that

has advantages over CSS for XML. While HTML can utilize inline styles, most user

agents do not interpret them with XML. Internal style sheets are also not

supported with XML, there is a workaround to use them. But it can have

problems and there is no specification. The usage of external style sheets is

possible with “xml-stylesheet” processing instruction, which has to be the first

tag in the document. As with HTML there can be multiple style sheets

referenced.(„How to add style to XML“, o. J.)

<?xml-stylesheet href="my-style.css"?>

7.3 Best Practices

CSS was evolved, there did also evolve some best practices, some of them will be

explained in this section.

CSS ignores all whitespaces and line breaks, therefore these can be used to bring

the code in a readable format. It is possible to put the whole rule in one line, or to

break it up into multiple lines („Organizing Your CSS - Learn Web Development |

MDN“, 2023).

To maintain an overview of the code, it can be structured in logical section. This

structure could start with the general styles and getting more specific to single

elements or parts of the document, the later in the CSS file lines („Organizing Your

CSS - Learn Web Development | MDN“, 2023).

Comments can help to mark these sections for easier navigation in the code. Also

adding comments to some rules is helpful if they are not self-explanatory or

Analysis of Cascading Style Sheets 25

referencing the source of the code if it is not self-written lines („Organizing Your

CSS - Learn Web Development | MDN“, 2023).

The used selector only should be as specific as necessary, this way they can be

used in multiple cases while only applying to the specific elements. Some times

rules have to be overruled which is easier if the first rule is not to specific lines

(„Organizing Your CSS - Learn Web Development | MDN“, 2023).

Beside the possibility of marking logical sections in the CSS code, it also can be

useful to split the code in multiple CSS files. When there are specific stylings that

only apply to one page or set of subpages, then this file can be, additional to the

general CSS file, be imported in these documents. Making it not only more

organized but avoid the download of unnecessary code lines („Organizing Your CSS

- Learn Web Development | MDN“, 2023).

Custom properties, CSS variables, can be useful if for example colors are often

reused. Then the variable can be assigned one time and be used as the value.

Custom properties promote consistency, reusability, and maintainability in CSS

codebases. Additionally reducing the amount of code duplication and improves the

efficiency. They can be modified using JavaScript, promoting dynamicity and

interactivity lines („Organizing Your CSS - Learn Web Development | MDN“, 2023).

Utilizing these practices needs consistency, to bring a positive effect. When naming

classes, it should also follow a consistent schema („Organizing Your CSS - Learn

Web Development | MDN“, 2023).

7.4 CSS methodologies

To mitigate the need to develop an own system when writing CSS, one of the

many existing methodologies can be selected and still be adapted to personal

needs if needed. These methodologies range from big classes for components to

classes with only one declaration. As always there is no right way to use CSS,

only personal, team, and project bases preferences. These methodologies have

the advantage that many developers know them, therefore code written with

them is accessible and understandable („Organizing Your CSS - Learn Web

Development | MDN“, 2023).

Analysis of Cascading Style Sheets 26

One of the commonly used methodologies is the Object-Oriented CSS. The

concept of OOCSS is the creation of classes that can be applied to different

objects, which share styles, to combine them to the desired style. It is based on

two principles, first to separate structure and skin, meaning to create own

classes for appearance and ones for the structure, not using the type selector.

The second principle being separate containers and content, not using combined

selectors by relation, making the classes used for them more versatile. OOCSS

reduces code duplication, thereby file size, and increases flexibility for style

application („Organizing Your CSS - Learn Web Development | MDN“, 2023;

Sullivan, o. J.).

SMACSS, short for Scalable and Modular Architecture for CSS, provides a

modular approach to structuring and organizing CSS for enhanced scalability and

maintainability. Styles are categorized into five categories. The base category is

for styling general properties, like typography. In the layout the basic structure

of the page is defined. Modules are reusable components with specific styling. To

handle dynamic changes and variations of elements, such as the hover state, the

state stylings are used. for different themes the corresponding theme category

exists. It based on single responsibility, styles are focused on single modules.

Using these categories, separates the modules from the basic design , thereby

making it more maintainable and extendable. SMACSS provides a clear structure

and naming convention making the code consistent („Organizing Your CSS - Learn

Web Development | MDN“, 2023; „Scalable and Modular Architecture for CSS“,

o. J.).

The Block-Element-Modifier, BEM, naming convention is popular for writing

maintainable code and standardizing naming classes, to enhance reusability and

structure. BEM breaks down the design into modular components and dividing

each into three parts. A standalone component that has its own functionality and

styling is called the block, they are named using lowercased words. Elements are

the inter part of the block and cannot exist without being tied to a block, they

are connected to the block using double underscores. For defining different

states or variation of block or elements the modifier is used, represented by

double dashes. This can lead to longer class names, but the advantages are that

the class names are self-explanatory, readable, and understandable. Making

Analysis of Cascading Style Sheets 27

collaboration in teams simpler and consistent („Organizing Your CSS - Learn Web

Development | MDN“, 2023; Strukchinsky, o. J.).

In contrast is the methodology of atomic CSS, which promotes granular writing

style. Making small and distinctive utility classes instead of longer component-

based classes. Its target is to make styling of individual elements more flexible

and reduce the file size while maximizing the code reusage. The styles are

broken down into atomic classes, containing only one property. The class names

represent the property value pair they contain, making them intuitive. By

combining different utiliy classes with another complex layouts and design can be

styled without the need of writing specific classes for components. Improving

performance, trough reduced load time and file size, and flexibility. But it leads

to a higher number of classes on each element, making the HTML more complex

and verbose („Organizing Your CSS - Learn Web Development | MDN“, 2023).

7.5 Frameworks

Utilizing the methodologies frameworks have emerged to simplify the writing of

CSS code. CSS frameworks are predesigned conventions and classes that can be

used to enhance styling efficiency. They provide a consistent style through the

document and often even offer complete components to implement. Frameworks

save setup time, because they often include completely responsive layout systems,

providing optimal presentation on different devices. CSS frameworks like

Bootstrap and Foundation have become widely popular and widely adopted in the

web development community. These frameworks offer comprehensive

documentation, support, and community resources. This extensive support

network makes it easy to adopt these frameworks and provides many out-of-the-

box solutions („Organizing Your CSS - Learn Web Development | MDN“, 2023).

Analysis of Cascading Style Sheets 28

8 Outlook

The evolution of CSS modules in the last 20 years enhanced the capabilities while

still making it simpler to style documents. New challenges for CSS are emerging

and the W3C is trying to recommend new modules to overcome them(„All CSS

specifications“, o. J.; „CSS current work & how to participate“, o. J.). There are

several key areas developed can be anticipated.

Styling the layout of a document has vastly improved with the flex layout box and

grid modules. The new multi column layout module is a stable proposed

recommendation from this year. Further improvements of these layout methods

can be expected, as they are all just level one modules, and the grid module is still

a candidate recommendation. Development of new modules would also be possible

since the system, of the parent element defining the position of the child, could be

adopted for different layout methods than flex layout box and grid („CSS current

work & how to participate“, o. J.).

The W3C is trying to enable more sophisticated and dynamic styling. Modern

systems generating HTML documents dynamically and only partly refreshing the

document, needs appropriate CSS properties for optimal styling of these

components and states („All CSS specifications“, o. J.).

With a staggering number of different devices and therefore screen sizes, the need

for responsiveness rises. The next module of media queries is already a working

draft, making them even more versatile. And also further improving CSS for

accessibility, to include as many people as possible, with additional media features

to test for preferences („Media Queries Level 5“, o. J.). Other modules for improved

accessibility are on the way to become recommendations. For example, the speech

module, to define how speech synthesizer render specific text („CSS Speech

Module Level 1“, o. J.).

Analysis of Cascading Style Sheets 29

9 Source Index

A brief history of CSS until 2016. (o. J.). Abgerufen 14. Juni 2023, von

https://www.w3.org/Style/CSS20/history.html

Accessibility—W3C. (o. J.). Abgerufen 29. Mai 2023, von

https://www.w3.org/standards/webdesign/accessibility

All CSS specifications. (o. J.). Abgerufen 31. Mai 2023, von

https://www.w3.org/Style/CSS/specs.en.html

Attribute selectors - CSS: Cascading Style Sheets | MDN. (2023, April 22).

Abgerufen 9. Mai 2023, von https://developer.mozilla.org/en-

US/docs/Web/CSS/Attribute_selectors

Basic concepts of flexbox - CSS: Cascading Style Sheets | MDN. (2023, Mai 24).

Abgerufen 14. Juni 2023, von https://developer.mozilla.org/en-

US/docs/Web/CSS/CSS_flexible_box_layout/Basic_concepts_of_flexbox

Block and inline layout in normal flow - CSS: Cascading Style Sheets | MDN. (2023,

Mai 29). Abgerufen 14. Juni 2023, von https://developer.mozilla.org/en-

US/docs/Web/CSS/CSS_flow_layout/Block_and_inline_layout_in_normal_flow

Cascading Style Sheets, designing for the Web – Chapter 2: CSS. (o. J.).

Abgerufen 9. Mai 2023, von https://www.w3.org/Style/LieBos2e/enter/

Comments - CSS: Cascading Style Sheets | MDN. (2023, April 16). Abgerufen 14.

Juni 2023, von https://developer.mozilla.org/en-US/docs/Web/CSS/Comments

CSS Box Model Module Level 3. (o. J.). Abgerufen 14. Juni 2023, von

https://www.w3.org/TR/css-box-3/

CSS Cascading and Inheritance Level 4. (o. J.). Abgerufen 14. Juni 2023, von

https://drafts.csswg.org/css-cascade-4/#cascade

CSS: Cascading Style Sheets | MDN. (2023, April 16). Abgerufen 14. Juni 2023,

von https://developer.mozilla.org/en-US/docs/Web/CSS

CSS current work & how to participate. (o. J.). Abgerufen 31. Mai 2023, von

https://www.w3.org/Style/CSS/current-work.en.html

Analysis of Cascading Style Sheets 30

CSS Custom Properties for Cascading Variables Module Level 1. (o. J.). Abgerufen

13. Juni 2023, von https://www.w3.org/TR/css-variables-1/

CSS: em, px, pt, cm, in…. (o. J.). Abgerufen 13. Juni 2023, von

https://www.w3.org/Style/Examples/007/units.de.html

CSS Flexible Box Layout Module Level 1. (o. J.). Abgerufen 14. Juni 2023, von

https://www.w3.org/TR/css-flexbox-1/

CSS Grid Layout - CSS: Cascading Style Sheets | MDN. (2023, Mai 29). Abgerufen

14. Juni 2023, von https://developer.mozilla.org/en-

US/docs/Web/CSS/CSS_grid_layout

CSS Grid Layout Module Level 2. (o. J.). Abgerufen 14. Juni 2023, von

https://drafts.csswg.org/css-grid/

CSS layout—Learn web development | MDN. (2023, Februar 23). Abgerufen 14.

Juni 2023, von https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout

CSS Snapshot 2023. (o. J.). Abgerufen 14. Juni 2023, von

https://www.w3.org/TR/CSS/

CSS Speech Module Level 1. (o. J.). Abgerufen 31. Mai 2023, von

https://www.w3.org/TR/css-speech-1/

CSS Syntax Module Level 3. (o. J.). Abgerufen 9. Mai 2023, von

https://www.w3.org/TR/css-syntax-3/

CSS value functions - CSS: Cascading Style Sheets | MDN. (2023, April 27).

Abgerufen 13. Juni 2023, von https://developer.mozilla.org/en-

US/docs/Web/CSS/CSS_Functions

CSS values and units - CSS: Cascading Style Sheets | MDN. (2023, März 30).

Abgerufen 13. Juni 2023, von https://developer.mozilla.org/en-

US/docs/Web/CSS/CSS_Values_and_Units

CSS WG Blog – Case-Insensitivity in CSS. (o. J.). Abgerufen 9. Mai 2023, von

https://www.w3.org/blog/CSS/2007/12/12/case_sensitivity/

Analysis of Cascading Style Sheets 31

Extensible Markup Language (XML). (o. J.). Abgerufen 14. Juni 2023, von

https://www.w3.org/XML/

How CSS is structured—Learn web development | MDN. (2023, März 2). Abgerufen

29. Mai 2023, von https://developer.mozilla.org/en-

US/docs/Learn/CSS/First_steps/How_CSS_is_structured

How to add style to XML. (o. J.). Abgerufen 29. Mai 2023, von

https://www.w3.org/Style/styling-XML.en.html

HTML: The Markup Language (an HTML language reference). (o. J.). Abgerufen

14. Juni 2023, von https://www.w3.org/TR/2012/WD-html-markup-

20121025/spec.html

!important - CSS: Cascading Style Sheets | MDN. (2023, März 12). Abgerufen 11.

Juni 2023, von https://developer.mozilla.org/en-US/docs/Web/CSS/important

Index of CSS properties. (o. J.). Abgerufen 10. Mai 2023, von

https://www.w3.org/Style/CSS/all-properties.en.html#list

Introduction to CSS layout—Learn web development | MDN. (2023, Februar 23).

Abgerufen 14. Juni 2023, von https://developer.mozilla.org/en-

US/docs/Learn/CSS/CSS_layout/Introduction

Media queries - CSS: Cascading Style Sheets | MDN. (2023, Mai 25). Abgerufen

14. Juni 2023, von https://developer.mozilla.org/en-

US/docs/Web/CSS/CSS_media_queries

Media Queries Level 5. (o. J.). Abgerufen 31. Mai 2023, von

https://www.w3.org/TR/mediaqueries-5/#descdef-media-prefers-reduced-

motion

Moreno, L., & Martinez, P. (2013). Overlapping factors in search engine

optimization and web accessibility. Online Information Review, 37(4), 564–580.

https://doi.org/10.1108/OIR-04-2012-0063

Organizing your CSS - Learn web development | MDN. (2023, Mai 9). Abgerufen

31. Mai 2023, von https://developer.mozilla.org/en-

US/docs/Learn/CSS/Building_blocks/Organizing

Analysis of Cascading Style Sheets 32

Scalable and Modular Architecture for CSS. (o. J.). Abgerufen 31. Mai 2023, von

http://smacss.com/

Selectors Level 4. (o. J.). Abgerufen 10. Mai 2023, von

https://drafts.csswg.org/selectors/

Specificity - CSS: Cascading Style Sheets | MDN. (2023, Mai 17). Abgerufen 14.

Juni 2023, von https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity

Strukchinsky, V. (o. J.). BEM — Block Element Modifier. Abgerufen 14. Juni 2023,

von http://getbem.com/

Sullivan, N. (o. J.). Object Oriented CSS. Abgerufen 31. Mai 2023, von GitHub

website: https://github.com/stubbornella/oocss/wiki/Home

Understanding Success Criterion 1.4.3: Contrast (Minimum) | WAI | W3C. (o. J.).

Abgerufen 29. Mai 2023, von

https://www.w3.org/WAI/WCAG21/Understanding/contrast-minimum.html

Usage Statistics of CSS for Websites, June 2023. (o. J.). Abgerufen 14. Juni 2023,

von https://w3techs.com/technologies/details/ce-css

User Agent Accessibility Guidelines (UAAG) 2.0. (o. J.). Abgerufen 14. Juni 2023,

von https://www.w3.org/WAI/UA/2011/ED-UAAG20-20110525/#def-user-agent

W3C Process Document. (o. J.). Abgerufen 14. Juni 2023, von

https://www.w3.org/2020/Process-20200915/#maturity-levels

Analysis of Cascading Style Sheets 33

10 Appendix

The HTML code follows for all examples in this paper.

<!-- code.html -->
<!DOCTYPE html>
<html lang="en">
<head>
 <link rel="stylesheet" href="/">
 <style> /* Internal CSS initialised by the style-tag */

 /* ----- EXAMPLE CSS CODE -----*/

 /* Media query */

 @media screen and (width < 500px) {
 p {
 color: red;
 }
 }

 /* Selectors */

 /* -Universal selector */
 *{
 color: navy;
 }

 /* -Type selector */
 span {
 color: red;
 }

 /* -ID selector */
 #id {
 color: red;
 }

 /* -Class selector */
 .class {
 color: red;
 }

 /* -Attribute selector */
 [attribute] {
 color: red;
 }
 [attribute="value"] {
 color: red;
 }

Analysis of Cascading Style Sheets 34

 /* -Pseudo class */

 .a:hover {
 color: red;
 }

 .b:first-child {
 color: red;
 }

 /* -Pseudo elements */

 .c::first-letter {
 color: red;
 }

 /* -Grouping and Compounding */

 .grouping1, .grouping2 {
 color: red;
 }

 p.compound {
 color: red;
 }

 /* -combinators */

 .ancestor p {
 color: red;
 }

 .parent > p {
 color: red;
 }

 .sibling ~ p {
 color: red;
 }

 .next-sibling + p {
 color: red;
 }

 /* Value function */

 .value-function {
 font-size: max(20px, 1.5rem);
 }

 /* Custom Property */

 :root{
 --example-color: #ff0000

Analysis of Cascading Style Sheets 35

 }
 .variable-color {
 color: var(--example-color);
 }

 /* Layout methods */
 /* Flexbox */

 .flex-container {
 display: flex;
 justify-content: start;
 align-items: center;
 }

 /* Grid */

 .grid-container {
 display: grid;
 grid-template-columns: 1fr 1fr;
 justify-items: center;
 align-items: center;
 }
 .grid-item-wide {
 grid-column: span 2;
 }

 </style>
</head>

<body>
 <section>

 <h1>Syntax</h1>
 <h2>at-rule</h2>
 <p>Paragraphs are red under 500px screen width </p>

 <h2>Selectors</h2>

 <p>Universal selector applied</p>

 <div>
 Type selector applied
 </div>
 <p id="id">ID selector applied</p>
 <p class="class">Class selector applied</p>
 <p attribute="value">Attribute selector applied</p>

 <p class="a">Hover pseudo class applied</p>

 <div>
 <p class="b">First-child pseudo class applied</p>
 <p class="b">This is the second child</p>
 </div>

Analysis of Cascading Style Sheets 36

 <p class="c">First-letter pseudo element applied</p>

 <div>
 <p class="grouping1">"grouping1" class applied</p>
 <p class="grouping2">"grouping2" class applied</p>
 </div>

 <div>
 <p class="compound">"p"element with "compound" class</p>
 <p class="">"p"element, no "compound" class</p>
 </div>

 <div class="ancestor">
 <p>Descendant combinated selector applied</p>
 <div>
 <p>Descendant combinated selector also applied</p>
 </div>
 </div>

 <div class="parent">
 <p>Child combinated selector applied</p>
 <div>
 <p>Child combinated selector NOT applied</p>
 </div>
 </div>

 <div>
 <p class="sibling">This is the starting sibling element</p>
 <p>Sibling combinated selector applied</p>
 <p>Sibling combinated selector applied</p>
 </div>

 <div>
 <p class="next-sibling">This is the starting sibling
element</p>
 <p>Next sibling combinated selector applied</p>
 <p>Next sibling combinated selector NOT applied</p>
 </div>

 <h2>Value Function</h2>
 <p class="value-function">This font size is the bigger option of
20px or 1.5rem</p>

 <h2>Custom Properties</h2>
 <p class="variable-color">The color of the custom property is
applied</p>

 <h1>Concepts</h1>
 <h2>Layout methods</h2>
 <h3>Flexbox</h3>
 <div class="flex-container">
 <div class="flex-item"></div>
 <div class="flex-item"></div>
 </div>

Analysis of Cascading Style Sheets 37

 <h3>Grid</h3>
 <div class="grid-container">
 <p>This is not a wide grid field</p>
 <p>Another grid field</p>
 <p class="grid-item-wide">This is a wide grid field</p>
 </div>

 </section>
</body>
</html>

The CSS code for implementing a separate file and to display the examples in this

paper correctly.

/* style.css */

/*: helper styles to display the examples correctly */
h1 {font-size: 2.6rem;}
h2 {font-size: 1.9rem;}
h3 {font-size: 1.3rem;}
p, span {font-size: 1.3rem;}
section > p, section > span, section > div, h2 {margin-bottom: 6rem;}
body {border: solid 1px black; padding: 3rem; max-width: 60ch; margin-
inline: auto; background-color: whitesmoke;}
.grid-container {
 width: 100%;
 border: 1px solid black;
 display: grid;
}
.flex-container {
 width: 100%;
 height: 15rem;
 border: 1px solid black;
}
.flex-item {
 width: 5rem;
 height: 5rem;
 background-color: red;
 border: 1px solid black;
}

