

Seminararbeit

SBWL: Business Information Systems

im SS 2023

BSF4ooRexx850 JDOR: Java 2D
Drawing for ooRexx

Elif Deger h11919438

PI-Leitung

ao.Univ.Prof. Dr. Rony G. Flatscher

Wien, 14.06.2023

Inhaltsverzeichnis

Abstract .. 3

1. Introduction .. 4

2. JDOR (Java 2D Drawing for ooRexx) ... 4

3. Java Graphics Creation ... 5

3.1 Abstract Windowing Toolkit (AWT) .. 5

3.2 Java 2D API ... 6

3.3 JDOR Command Handler .. 7

4. JDOR Examples in ooRexx .. 10

4.1 Creating Text - JDOR-text.rxj .. 10

4.2 Drawing - JDOR-drawing.rxj ... 13

4.3 Visualizing with Images - JDOR-images.rxj ... 15

4.4 Rotate, Scale, Translate and Shear – JDOR-manipulate.rxj .. 17

4.5 Moving Objects - JDOR-move.rxj .. 19

5. Additional Examples .. 22

5.1 Example 1 - JDOR-PurpleStar.rxj ... 22

5.2 Example 2 - JDOR-AffineTransformation.rxj ... 24

5.3 Example 3 - JDOR-CubePyramid.rxj .. 25

5.4 Example 4 - JDOR-RotatingSquare.rxj .. 27

6. Conclusion ... 29

Appendix .. 30

A 1. Installation Guide .. 30

A 2. Codes ... 30
A 2.1 JDOR-text.rxj ... 30
A 2.2 JDOR-drawing.rxj .. 32
A 2.3 JDOR-images.rxj .. 33
A 2.4 JDOR-manipulate.rxj ... 34
A 2.5 JDOR-CubePyramid.rxj .. 36

A 3. List of Figures ... 38

A 4. List of Tables .. 38

References .. 39

Abstract

This seminar paper showcases the application of the latest BSF4ooRexx850 extension called
JDOR in the context of ooRexx programming to generate diverse images. The paper presents
"Nutshell-Examples" to demonstrate the fundamental operations and their implementation
using JDOR. ooRexx, is utilized along with the powerful BSF4ooRexx850 framework to
leverage Java's extensive functionality while benefiting from the easy-to-understand syntax
of ooRexx. With the help of JDOR, even programmers who have limited understanding of
ooRexx and Java can create detailed and visually captivating drawings. This is particularly
beneficial for those who are interested in simple graphic design.

1. Introduction

This paper explores Java 2D drawing in ooRexx, focusing on the powerful capabilities offered
by the JDOR (Java 2D Drawing for ooRexx) software library. JDOR serves as a versatile tool
for creating captivating 2D graphics in Java, and when combined with ooRexx and
BSF4ooRexx850, it enables seamless integration of visually stunning graphics into Rexx
scripts.

The paper begins by providing an introduction to Java 2D, laying the foundation for
understanding the potential of JDOR in crafting engaging 2D graphics within the Java
programming language. It explores the Java 2D API, which extends the Abstract Windowing
Toolkit (AWT) and offers an extensive set of functionalities for graphic creation and
manipulation. The integration of JDOR with the Java 2D API provides a user-friendly
approach, allowing Rexx programmers to leverage the power of Java's graphics capabilities
without the need for in-depth knowledge of Java syntax and structure.

Furthermore, the paper delves into the JDOR command handler, a Rexx command handler
implemented in Java. This command handler simplifies the utilization of Java 2D for Rexx
programmers, providing a set of commands that mirror the methods in the
Java.awt.Graphics and Java.awt.Graphics2D classes. With JDOR, Rexx programmers can
effortlessly perform tasks such as drawing shapes, lines, images, and text, setting colors,
fonts, and strokes, and accessing the current state and data of JDOR for flexible graphic
manipulation.

The paper concludes with practical programming examples that showcase the functionalities
of JDOR in ooRexx. These examples serve as a foundation for developing more complex
programs and unlocking the full potential of JDOR in creating captivating 2D graphics. By
delving into Java 2D drawing in ooRexx through JDOR, users can unleash their artistic visions
and bring them to life with ease and efficiency.

2. JDOR (Java 2D Drawing for ooRexx)

The introduction of BSF4ooRexx850 beta has simplified the implementation of Rexx
command handlers in Java (Flatscher, 2023). An example of this is the JDOR (Java2D for
ooRexx) Rexx command handler provided as part of the package (Flatscher, 2022). JDOR is a
software library designed for creating 2D graphics in ooRexx.

JDOR provides a user-friendly and efficient approach to 2D graphic creation. With its
intuitive interface and comprehensive tools, JDOR makes it easy to bring creativity to life
without the usual complexities of graphic development. BSF4ooRexx850 enables the
creation of sophisticated 2D graphics that respond to user input, adapt to changing
conditions, and offers a captivating experience by smoothly working with Java objects.

The needed installations to start using JDOR can be found under Appendix A1 Installation
Guide.

Before diving into creating drawings with JDOR, it is essential to establish a
solid understanding of Java 2D. The following chapter serves as an introduction to Java 2D,
laying the groundwork for the subsequent chapters. By familiarizing ourselves with Java 2D,
we can fully grasp the capabilities and potential of JDOR for crafting captivating 2D graphics
within the Java programming language.

3. Java Graphics Creation

Java offers a diverse range of tools and frameworks for programmers to develop graphics
and graphical user interface (GUI) components. Many of these tools are encompassed within
the Java Foundation Classes (JFC), which come pre-integrated with Java (Oracle, o.D -a).The
graphics created in this seminar paper are created using the Java 2D API feature.

The Java 2D API serves as an extension of the Abstract Windowing Toolkit (AWT). It provides
an extensive set of functionalities for graphic creation and manipulation. One notable aspect
is the integration of the REXX command handler known as "JDOR" (Java Drawing for ooRexx).
This enables programmers to harness the power of the Java 2D API's Graphics and
Graphics2D classes within ooRexx, without the need for prior knowledge of Java's syntax and
structure. This integration facilitates a seamless experience for developers, allowing them to
leverage the capabilities of the Java 2D API within the ooRexx environment, thereby
enhancing their ability to create visually appealing graphics. (Flatscher, 2022).

3.1 Abstract Windowing Toolkit (AWT)

In order to write a useful application, it is necessary to have a user interface (Holt, 1999).
Abstract Windowing Toolkit (AWT) packages provide a set of classes to allow you to create a
GUI interface using graphical components in Java programs (Cowell, 1999). Since the AWT
has been a fixed part of the Java class hierarchy since the very first Java version 1.0, such
graphical applications can run on all operating systems thanks to the portability of Java
(Schäling, 2010).

Java AWT components are platform-dependent because components are displayed
according to the view of the operating system. Java AWT calls Operating systems subroutine
for creating components such as textbox, button, etc. An application built on AWT looks like
a Windows application when it runs on Windows, but the same application would look like a
Mac application when runs on Mac OS (https://dotnettutorials.net).

AWT features include; a set of native user interface components, a robust event-handling
model, graphics and imaging tools, including shape, color, and font classes, layout managers,
for flexible window layouts that do not depend on a particular window size or screen
resolution, data transfer classes, for cut-and-paste through the native platform clipboard
(Oracle, o.D -g).

3.2 Java 2D API

Java 2D API Enables developers to easily incorporate high-quality 2D graphics, text, and
images in applications and applets. Java 2D includes extensive APIs for generating and
sending high-quality output to printing devices (Oracle, o.D -g).

The Java 2D API provides two-dimensional graphics, text, and imaging capabilities for Java
programs through extensions to the Abstract Windowing Toolkit (AWT) (Oracle, o.D.-f).
Through the REXX command handler “JDOR” programmers have the capability to use
elements from the Java 2D APIs “Graphics” and “Graphics2D” classes in ooRexx without prior
knowledge of the syntax and structure of Java (Flatscher, 2022b).

The primary class in this API is the Graphics2D, which is a subclass of the Graphics class.
Graphics2D provides uniform support and advanced control over 2D shapes, such as text,
lines, and objects, compared to Graphics class (Oracle, o.D.-b).

The Java 2D API operates with two coordinate spaces: user space and device space. User
space is a device-independent logical coordinate system used by your program to specify
graphics primitives. All geometries provided to Java 2D rendering routines are defined in
user-space coordinates. On the other hand, device space represents the coordinate system
of the specific output device, such as a screen, window, or printer. The coordinate systems
of different devices can vary significantly, but Java programs are shielded from these
differences. The API automatically handles the necessary conversions between user space
and device space during rendering, ensuring that graphics are accurately displayed
regardless of the target device (Oracle, o.D.-c).

Figure 1 User Space Coordinate System

The Java 2D API offers three levels of configuration information to help convert from the
device-independent user-space to the device-dependent device-space:
GraphicsEnvironment, GraphicsDevice, and GraphicsConfiguration. GraphicsEnvironment
provides a collection of all the rendering devices connected to the platform and a list of
available fonts. GraphicsDevice describes a visible rendering device that can have multiple
GraphicsConfigurations, which describe certain modes like 1920x1080 or 1280x720
(Blauensteiner, 2023).

The Java 2D API has a unified coordinate transformation model. All coordinate
transformations, including transformations from user to device space, are represented
by AffineTransform objects. AffineTransform defines the rules for manipulating coordinates
using matrices (Sun-Microsystems, 1999).

You can add an AffineTransform to the graphics context to rotate, scale,
translate, or shear a geometric shape, text, or image when it is rendered. The added
transform is applied to any graphic object rendered in that context. The transform is
performed when user space coordinates are converted to device space coordinates (Sun-
Microsystems, 1999).

The API offers four basic transformation methods: “Translate”, “Rotate”, “Scale” and
“Shear”. “Translate” moves the origin (x=0, y=0) of the graphics context to a new point,
“Rotate” rotates a previously created object by a specified angle, “Scale” applies a multiplier
to both axes for all the following commands, and “Shear” shifts or slants coordinates in one
axis as a function of their second axis (Blauensteiner, 2023).

While the Java 2D API offers a number of complex methods for creating graphics, most
programs only use a subset of the capabilities found in the Graphics class. Graphics methods
can be divided into two groups: rendering basic shapes, texts, and images through the draw
and fill methods and setting attributes to those basic drawings and fillings. These method
groups can be combined to create a wide variety of graphics (Blauensteiner, 2023).

3.3 JDOR Command Handler

The JDOR is a Rexx command handler that serves the purpose of exploiting Java's awt 2D
classes for graphics manipulation. This implementation, developed in Java using
BSF4ooRexx850, provides various functionalities such as accessing, creating, and dropping
Rexx variables within the caller's context. Its primary objective is to enable seamless
integration with the Java awt graphics 2D subsystem. To ensure ease and simplicity for Rexx
programmers, the JDOR adheres to the Rexx philosophy and offers well-thought-out
commands and their corresponding arguments. Furthermore, it is essential to configure the
Rexx interpreter to load and employ these specialized Rexx command handlers effectively.
Through JDOR, Rexx programmers can effortlessly harness the power of Java's awt graphics
2D subsystem in their applications (Flatscher, 2022).

The Rexx command handler, implemented in Java, aims to simplify the utilization of Java2D
for Rexx programmers without requiring direct usage of Java code. Its main purpose is to
facilitate the exploitation of Java awt package's Graphics and Graphics2D drawing
capabilities through a set of commands. These commands enable Rexx programmers to
perform tasks such as drawing strings, lines, rectangles, ovals, images, and more, as well as
setting colors, fonts, and strokes. Additionally, the command handler allows access to the
current state and JDOR data, including the directories and HashMaps of loaded colors, fonts,
and strokes. This provides the flexibility to define custom colors, fonts, and strokes from
within the Rexx program and store them for future use. The command handler also provides
features like temporary execution halt for animation purposes, easy saving and restoration
of graphic configurations and image states at runtime, and effortless saving and loading of
images. It further enables the recording and replaying of commands, effectively creating
Rexx macros for Java 2D graphics, which can be stored even in plain text files (Flatscher,
2022).

The drawing area is a canvas with a specific width and height in pixels, where
the origin (x=0, y=0) is positioned at the top left corner. The translate command allows for
moving the canvas, and in this coordinate system, the x coordinate increases towards the
right, while the y coordinate increases towards the bottom (Flatscher, 2022).

When using the Rexx command handler, the commands are structured based on the
methods in the java.awt.Graphics and java.awt.Graphics2D Java classes. However, there is a
crucial distinction in how the x and y coordinates are handled. In many Java methods, these
coordinates are explicitly included as the first two arguments. In contrast, the Rexx
programmer defines these coordinates using the moveTo x y command before executing
other commands. Consequently, the Rexx commands, which mirror the Java method names,
do not explicitly mention the x and y coordinates. Instead, they rely on the previously set
positions for their values. This approach simplifies the Rexx commands and aligns them with
the Java counterparts while offering flexibility and ease of use for Rexx programmers.
(Blauensteiner, 2023).

Below is a table containing the JDOR commands used in this paper, along with their
respective descriptions. The documentation of the JDOR Commands can be found in the
BSF4ooRexx-folder with the following path:

/BSF4ooRexx850\information\jdor\jdor_doc.html

Command Description

background Sets the color of the background.

color nickname Supplying only
the colorNickName argument will load the
color from the internal register or from a
Rexx variable by that name referring to a
color.

drawImage Draws an image which got previously
loaded from the filesystem with the
command loadImage and stored internally
with an imageNickName in the internal
image registry.

drawLine x y Draws a line from the current coordinates
to the given coordinates.

drawOval width height Draws an oval in an invisible rectangle from
the current coordinates (upper- left) with
the given width and height.

drawPolygon Draws a polygon using nPoints coordinates
from xPoints-array and yPoints-array .The
polygon gets closed by drawing a line from
the first and last point.

drawPolyline Draws a polyline using nPoints coordinates
from xPoints-array and yPoints-array.

drawRect width height Draws a rectangle from the current
coordinates (upper- left) with the given
width and height .

drawString text Draws a string (=text) at the current
coordinates.

fillOval width height Fills an oval in an invisible rectangle starting
from the current coordinates (upper- left)
with the given width and height.

fillPolygon Fills a polygon using nPoints coordinates
from xPoints-array and yPoints-array.

fillRect width height Fills a rectangle starting from the current
coordinates (upper-left) with the given
width and height.

font nickname Sets a previously saved font as the font for
the following commands.

fontSize size Sets the font size for the following
commands.

fontStyle style Sets the font style for the following
commands. Style-attribute (0: Normal, 1:
Bold, 2: Italic, 3: Bold+Italic).

goto x y Sets the x1 and y1 coordinates for the
following commands.

loadImage nickname path Saves an image from the given path under
the given nickname

Rotate angle in degree Rotates the following drawing in the given
theta (=angle in degree) around the origin
of the coordinate system. „x “and „y“sets a
new origin for the rotation.

saveImage Saves the current image to a file.

Scale Queries and optionally changes
("concatenates") the scale factor for the x
and y axis.

Shear Applies a factor that determines how much
an object shifts in relation to its “x” and “y”
coordinates.

Sleep Sleeps (halts execution) for the given
interval expressed in seconds.

Stroke NickName width cap join miterlimit
dashArray dashPhase

Defines a new stroke of width in pixels, cap,
join, miterlimit, dashArray, dashPhase,
stores it in the internal registry with the
uppercased strokeNickName and returns
the previous stroke via the Rexx variable
RC.

Transform An AffineTransform defines a matrix that
gets used to calculate the
effective x and y values for the target device
according to this formula:

 x' = translateX + scaleX*x + shearX*y
 y' = translateY + scaleY*y + shearY*x

Translate x y Sets a new origin for the coordinate-
system.

winShow Shows the current window.

winSize width height Sets the size (width and height) of a new
window.

winTitle Queries and optionally sets the title of the
frame (window) that displays the current
image.

Table 1: JDOR commands

4. JDOR Examples in ooRexx

In this chapter, practical programming examples to illustrate the functionalities of the JDOR
package are provided. The examples build upon each other progressively, enhancing the
capabilities introduced in the previous program. By following this approach, the chapter
offers fundamental use-cases and practical guidance for effective command utilization.
Programmers can use these examples as a foundation for developing more complex
programs and unleash the full potential of the JDOR package.

To begin working with JDOR, the following code block should alyaws be executed:

1
2

call addjdorhandler -- load and add the java rexx command handler, using default name: jdor
address jdor -- set default environment to jdor

These instructions ensure that the JDOR package is properly loaded and set as the default
environment for further operations.

4.1 Creating Text - JDOR-text.rxj

The Java 2D API has various text rendering capabilities including methods for rendering
strings and entire classes for setting font attributes and performing text layout (Oracle, o.D -
f).
The "Graphics" and "Graphics2D" classes provide a range of options for presenting text
within a window. Along with the font selection, these classes allow for customization of the
text's size and style to suit the specific context. In order to draw a static text string, the most
direct way to render it directly through the Graphics class by using the drawString method
(Oracle, o.D -e). In order to utilize a specific font in JDOR, it is necessary to define it
beforehand. Within JDOR, there are typically two methods available for defining a new font.
However, it is important to note that only fonts that are already installed on the system can
be used with both of these approaches. In the example below, the used fonts have been
obtained from the list of the fonts available on the system, which are saved under the
program named "2-110_JDOR_listShowPrintFonts.rxj,". The program can be found in the
“samples” folder of the installed BSF4ooRexx850 package.

The given code excerpt below demonstrates the usage of JDOR to create a graphical window
and display text using various fonts and colors:

Initially, a new window is created with a width of 550 and a height of 300 using the "winSize"
command, followed by displaying the window using "winShow", between line 13 and 16.

The program starts by setting the font size to 14 and the font to "14_Comic" (Comic Sans
MS) in lines 18 and 20. In line 21, the "goto" command positions the drawing cursor at

coordinates (70, 60), and in line 24 the "drawString" command is used to
display the text " font:". The "stringBounds" command in line 25 retrieves the bounding box
information of the text, and the "parse var" statement in line 26 extracts the width of the
text, which is then output using "say".

Starting from line 39, similar steps are repeated for other fonts, including "20_Bradley"
(Bradley Hand ITC), "18_Copper" (Copperplate Gothic Light), and "20_Colonna" (Colonna
MT). Different texts are displayed using the respective fonts, and their bounding box
information is obtained to extract the width of each text, which is again output using "say".

The code then defines several colors using the "color" command, each specified with their
respective RGB values, which can be found in the fully code in Appendix.

Furthermore, the line 96 "sleep 40" introduces a script pause of 40 seconds, allowing for a
controlled timing delay in the execution of the script. This feature can be useful for various
purposes such as coordinating actions or providing time for user interaction.

Lastly, the inclusion of "::requires "jdor.cls"" in the code signifies the inclusion of the
"jdor.cls" file, which grants access to the "addJdorHandler" routine. This import enables the
utilization of specific functionalities or capabilities provided by the "jdor.cls" file within the
script, expanding the range of tools and features available for use.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

--Crea_ng and showing a new window
win_width = 500
win_height = 180
winSize win_width win_height
winShow

fontSize 14
fontStyle 1 -- 1=BOLD
font 14_Comic "Comic Sans MS"
goto 70 60
color black
font 14_Comic
drawString "font:"
stringBounds "font:"
parse var rc x " " y " " width " " height
say width
color black
drawLine 70+width 60
goto 270 60
drawString "text:"
stringBounds "text:"
parse var rc x " " y " " width " " height
say width
color black
drawLine 270+width 60

--create the 1st
fontSize 20
fontStyle 3 -- 3=BOLD+ITALIC

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

font 20_Bradley "Bradley Hand ITC"
goto 270 90
color shallowSea
font 20_Bradley
drawString "Dream big, work hard"
stringBounds "Dream big, work hard"
parse var rc x " " y " " width " " height
say width
color black
drawLine 270+width 90
goto 70 90
color enchan[ng
font 20_Bradley
drawString "Bradley Hand ITC:"
stringBounds "Bradley Hand ITC:"
parse var rc x " " y " " width " " height
say width

--create the 2nd
fontSize 18
fontStyle 1
font 18_Copper "Copperplate Gothic Light"
goto 270 120
color lagoon
font 18_Copper
drawString "Stay curious"
stringBounds "Stay curious"
parse var rc x " " y " " width " " height
say width
goto 70 120
color warmSpring
drawString "Forte:"
stringBounds "Forte:"
parse var rc x " " y " " width " " height
say width

--create the 3rd
fontSize 20
FontStyle 3
font 20_Colonna "Colonna MT"
goto 270 150
color mosaicTile
font 20_Colonna
drawString "Embrace the challenge"
stringBounds "Embrace the challenge"
parse var rc x " " y " " width " " height
say width
goto 70 150
color cerulean
font 20_Colonna
drawString "Colonna MT:"
stringBounds "Colonna MT:"
parse var rc x " " y " " width " " height
say width

sleep 40
::requires "jdor.cls"

Figure 2: JDOR-text.rxj (extract- complete code in Appendix -A2.1 JDOR_text.rxj)

 Figure 3: Output of JDOR-text.rxj

4.2 Drawing - JDOR-drawing.rxj

The Java 2D API provides a useful set of standard shapes such as points, lines, rectangles,
arcs, ellipses, and curve from “Graphics” and “Graphics2D”.

The “draw”-command only draws the outlines of the respective shapes in the previously
defined color. For example, the “drawRect” command draws an empty rectangle with the
given color. In order to fill the rectangle, the “fillRect” command will be used.

The provided code excerpt below demonstrates the use of JDOR for creating and graphical
elements. The first part of code draws a series of ovals at different positions on the window.
To display these drawings in ooRexx, a new window or frame must be created. Before the
first oval is drawn, the starting point (“x” and “y”) of the new drawing must first be selected
with the “goto” command. The “goto” command moves the drawing cursor to a specific
position, and the drawOval command is used to draw ovals with the specified dimensions
(see lines 11-23).

In lines 26 and 27, the width and height of the rectangles to be drawn are defined by
"rect_width = 30" and "rect_height = 30". These values determine the dimensions of the
rectangles, ensuring consistency in their size. Additionally, in lines 30 and 31, the initial
position of the first rectangle is set with "start_x = 200" and "start_y = 5". By specifying the
coordinates (x and y), the position of the first rectangle is established within the graphical
context, providing a starting point for subsequent drawings.

The second part of the code, starting in line 34, uses a loop (do i = 1 to 10) to draw a pattern
of rectangles. It calculates the position of each rectangle based on the loop index (i) and the
defined width and height. The “goto” command moves the drawing cursor to the current
position, and the “fillrect” command fills the rectangles with the specified dimensions.

8
9
10
11
12

-- Set the color
color mulberry 192 69 161
-- Draw the ovals
goto 50 50
drawOval 40 40

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

goto 53 53
drawOval 60 60
goto 56 56
drawOval 80 80
goto 59 59
drawOval 100 100
goto 62 62
drawOval 120 120
goto 65 65
drawOval 140 140
goto 68 68
drawOval 160 160
-- Define the size of the rectangles
rect_width = 30
rect_height = 30

-- Set the ini_al posi_on for the first rectangle
start_x = 200
start_y = 5

-- Draw the padern of Sapphire colored rectangles
do i = 1 to 10
 -- Calculate the posi_on of the current rectangle
 rect_x = start_x + (i - 1) * rect_width
 rect_y = start_y + (i - 1) * rect_height

-- Fill the rectangle at the current posi_on with the random color
 goto rect_x rect_y
color sapphire 79 118 231
 fillrect rect_width rect_height
end
-- Define the size of the rectangles
rect_width = 30
rect_height = 30
-- Set the ini_al posi_on for the first rectangle
start_x = 230
start_y = 5
-- Draw the padern of orange rectangles
do i = 1 to 10
-- Calculate the posi_on of the current rectangle
rect_x = start_x + (i - 1) * rect_width
rect_y = start_y + (i - 1) * rect_height
 -- Fill the rectangle at the current posi_on with the random color
goto rect_x rect_y
color orange
fillrect rect_width rect_height
end

Figure 4: JDOR-drawing.rxj (excerpt- complete code in Appendix -A2.2 JDOR-drawing.rxj)

 Figure 5: Output of JDOR-drawing.rxj

4.3 Visualizing with Images - JDOR-images.rxj

Images are an important component of many modern graphical user interfaces, and
leveraging the capabilities of the "Graphics" and "Graphics2D" libraries is crucial for image
manipulation. JDOR enables developers to utilize these essential functions within the ooRexx
environment.

The application can draw on to image by using Java 2D API graphics calls. So, images are not
limited to displaying photographic type images. Different objects such as line art, text, and
other graphics and even other images can be drawn onto an image (Oracle, o.D.-d). The
resulting image can then be drawn to a screen, sent to a printer, or saved in a graphics
format such as PNG, GIF etc (Oracle, o.D.-d).

In the given example below, the emphasis is placed on three key commands: "loadImage",
"drawImage" and "saveImage". These commands hold significant importance when it comes
to handling and storing images. The " loadImage" command is utilized to import an image
into the JDOR registry. To position the image in the center of the frame, the image's
dimensions are required, which can be obtained using the "imageSize nickname" command.
The width and height of the image are then stored in the "rc" variable. By combining the
window size and image dimensions, the starting point for the image can be calculated and
specified using the "goto" command. Finally, the "drawImage nickname" command is used
to draw the image at the current location in the JDOR window. With the “saveImage
nickname the resulting image is saved under the name “nickname.png” in the current path.

The following example will visualize the load of an image of the Pyramids of Giza into the
ooRexx frame and adding the names of the pyramids in various colors and fonts.
Additionally, some drawings will be added on the screen.

In the code excerpt given below, in line 12 an image file of the Giza Pyramids named
"py.png" is imported and assigned the nickname "Pyramids_of_Giza" using the “loadImage”
command. The image is then drawn on the window using the “drawImage” command in line
13.

Next, rectangles and circles are drawn and filled, starting from line 16. The
cursor is moved to specific coordinates using “goto”, and the “drawRect” and “fillRect”
commands are used to draw and fill rectangles, while the “drawOval” and “fillOval”
commands are employed for circles. The desired colors are applied to the shapes (see lines
16, 23, 29)

Text drawing follows, starting with the drawing of the first pyramid's name in line 33. The
font size is set to 16 using “fontSize 16”, and the "Berlin Sans FB" font is selected with the
font command. The color "silkribbon" is applied (respective RGB values of the colors are
defined at the beginning of the code, which can be found in the full code in Appendix A 2.3),
and the text "MENKAURE" is drawn at coordinates (50, 100) using “drawstring”. The string's
bounding box is determined using “stringBounds”, and the width of the box is extracted and
displayed using parse var. A line is drawn from the starting point to the end of the text using
“drawLine” with the calculated width.

Starting in lines 45 and 52, the second and third pyramids' names are drawn similarly, but
with different font sizes, fonts, and colors. The text "KHUFU" is drawn at (250, 50) using a
font size of 32 and the "Forte" font. The text "KHAFRE" is drawn at (400, 110) with a font size
of 24 and the "Arabic Typesetting" font.

Lastly, the resulting image is saved in the same directory as "Names_of_Giza_Pyramids.png"
using “saveImage”.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

 -- import the image
loadImage Pyramids_of_Giza "py.png" -- nickname and path
drawImage Pyramids_of_Giza

 -- draw and fill rectangle
color powderblue
goto 140 200
drawRect 60 40
fillRect 60 40

 -- draw and fill circle
goto 170 210
color thistle
drawOval 70 70
fillOval 70 70

 -- draw rectangle
goto 260 220
color tropicaldream
drawRect 70 70

 -- 1st Pyramid
fontSize16
fontStyle 1 -- 1=BOLD
font 16_Berlin_S "Berlin Sans FB"
color silkribbon
goto 50 100
drawString "MENKAURE"
stringBounds"MENKAURE"
parse var rc x " " y " " width " " height
say width

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

color citron
drawLine50 + width 100

 --2nd Pyramid
fontSize 32
font 32_Forte "Forte"
color blazeorange
goto 250 50
drawString "KHUFU"

 -- 3rd Pyramid
fontSize 24
font 24_Arabic_T "Arabic Typesegng"
color jamaicansea
goto 400 110
drawString "KHAFRE"

 --Saving the created image in the same directory
saveImage "Names_of_Giza_Pyramids.png"
sleep 40
::requires "jdor.cls"
Figure 6: JDOR-images.rxj (excerpt- complete code in Appendix -A2.3 JDOR-images.rxj)

Figure 7: Output of JDOR-images.rxj

4.4 Rotate, Scale, Translate and Shear – JDOR-manipulate.rxj

The transform attribute in the Graphics2D context can be modified to move, rotate, scale,
and shear graphics primitives when they are rendered. The transform attribute is defined by
an instance of the Affine Transform class. An affine transform is a transformation such as
translate, rotate, scale, or shear in which parallel lines remain parallel even after being
transformed (Oracle, o.D.-h).

The Graphics2D provides transformation methods that allow you to modify the existing
transform. An angle of rotation in radians can be specified, allowing for rotation. Scaling can
be achieved by specifying factors for both the x and y directions. Shearing can be performed

by specifying shearing factors for both the x and y directions. Translation can
be accomplished by specifying offsets for both the x and y directions (Oracle, o.D.-h).

The given example below starts by drawing a coordinate system by looping through the
width and height of the window, which can be found between lines 13 and 20. The “goto”
statement moves the drawing cursor to the specified coordinates, and “drawLine” draws
lines to connect the points. The coordinate system lines are drawn with the
coordinate_system color.

After that, various methods and transformations are applied. The program starts drawing
two lines forming an X shape in line 28. The “moveTo” command sets the starting point of
the lines, and the color command defines a color named "pantone" with RGB values (0, 206,
209) and an alpha value of 127 (50% transparency). The “fillRect”, “drawRect”, and
“drawOval” methods are used to fill and draw rectangles and ovals with the specified colors.

A translation is performed using the “translate” command in line 37, shifting subsequent
drawings to a new position (260, 250). The “rotate” command rotates subsequent shapes by
45 degrees counterclockwise around the origin (0, 0). The “fillRect” and “fillOval” methods
are applied with the “pantone” color, and “drawRect” and “drawOval” are used with the
color blue.

The “goto” statement in line 48 moves the drawing cursor to (150, 15), and “drawPolygon” is
used to draw a polygon with a size of 50x50 pixels. The “rotate” command in line 50 rotates
the subsequent polygon by 45 degrees. Another “drawPolygon” with the same size is drawn
after the rotation.

Starting in line 54, moving to (70, 70) using “goto”, an orange color is set using “color”, and
“fillOval” fills an oval with dimensions of 40x40 pixels in line 56. The "shear -1 0" command
applies a shearing transformation with a horizontal shear factor of -1. Then, a pink color is
set using “color”, and another “fillOval” fills an oval with the same dimensions in pink color.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

 --drawing the system
color coordinate_system
 do i=0 to win_width by 25
goto i 0
drawline i win_height
 end
 do i=0 to win_height by 25
goto 0 i
drawline win_width i
 end
color middle
goto win_width/2 0
drawline win_width/2 win_height
goto 0 win_height/2
drawline win_width win_height/2
-- Applying methods
-- draw two lines forming a big X
moveTo 70 80 -- currX=70, currY=80
 -- define and set color, register it with the name "pantone"

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

color pantone 0 206 209 127 -- R,G,B,alpha=127 (50 % transparency)
fillRect 50 50
color blue
drawRect 50 50
color blue
drawOval 50 50

translate 260 250
moveTo 0 0
rotate 45
color pantone
fillRect 50 50
fillOval 50 50
color blue
drawRect 50 50
color blue
drawOval 50 50

“goto 150 15"
drawPolygon 50 50
rotate 45
drawPolygon 50 50
rotate 45

goto 70 70
color orange
fillOval 40 40
"shear -1 0"
color pink
fillOval 40 40

 Figure 8: JDOR-manipulate.rxj (excerpt- complete code in Appendix- A 2.4 JDOR-manipulate.rxj)

Figure 9: Output of JDOR-manipulate.rxj

4.5 Moving Objects - JDOR-move.rxj

To “animate” objects in ooRexx through JDOR, you can create the illusion of movement by
repeatedly drawing an object at different positions within short time intervals. While the
object remains stationary in reality, the rapid succession of these drawings makes it appear

as if the object is actually moving from one place to another (Blauensteiner,
2023). This technique utilizes the capabilities of Java 2D, allowing one to create dynamic and
visually engaging animations within your ooRexx scripts.

In the following example, inside the animation window, a square object will appear to move
in a circular path. The object's size is determined by the “square_size” variable. The
animation will continue indefinitely as the square object moves from one position to
another.

First, the code imports the Java Math class from the java.lang package using the bsf.import
function, assigning it the name "calc" in ooRexx. This allows access to various mathematical
functions provided by the Math class.

Next, several variables are defined: “win_width” and “win_height” represent the dimensions
of the animation window, “square_size” determines the size of the square object to be
drawn, speed sets the rate at which the object moves, and “desertSunrise” defines a custom
color using RGB values.

The script proceeds with defining variables in lines 19-22: centerX and centerY represent the
coordinates of the window's center, radius determines the distance from the center at which
the object will move, and angle holds the initial angle for the object.

In line 25, within an infinite loop, the script calls “getState”, to retrieve the current state of
the animation.

Next, the code calculates the current X and Y positions of the object based on the centerX,
centerY, angle, and radius variables in lines 26 and 28. The currX and currY variables
represent the top-left coordinates of the square object to be drawn. The “cos” function is
used in the code to calculate the X-coordinate of the current position on a circular path. It
helps determine the horizontal position based on the angle and radius. Similarly, the “sin”
function is used to calculate the Y-coordinate, representing the vertical position on the
circular path. Together, these calculations enable the object to move smoothly along the
circular trajectory in the animation.

The “goto” statement moves the drawing cursor to the specified currX and currY
coordinates, and “fillRect” fills a square of size “square_size “at the current cursor position.

In line 32, the angle is then incremented by the speed value to control the object's
movement.

1
2
3
4
5
6
7
8
9
10

call addjdorhandler
address jdor
call bsf.import "java.lang.math", "calc" -- allows access to various mathema_cal func_ons
-- Create a new window
win_width = 500
win_height = 500
square_size = 50

speed = 2 -- speed of the anima_on is set to 2
color desertSunrise 255 167 146

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

winsize win_width win_height
new win_width win_height
background white
clearRect win_width win_height
winshow
color desertsunrise

centerX = win_width / 2
centerY = win_height / 2
radius = win_width / 4
angle = 0
 -- Start the loop
do forever
getstate
currx = centerx + .calc~cos(.calc~toradians(angle)) * radius - square_size / 2 -- Calculates the X-
coordinate of the current posi_on based on the angle and radius.
curry = centery + .calc~sin(.calc~toradians(angle)) * radius - square_size / 2

goto currx curry
fillRect square_size square_size
angle = angle + speed -- update the angle for the next itera_on
sleep 0.01
end --end the infinite loop
::requires "jdor.cls"

Figure 10: JDOR-move.rxj

Figure 11: Output of JDOR-move.rxj

5. Additional Examples

This chapter expands on JDOR by showcasing additional examples for better understanding.

5.1 Example 1 - JDOR-PurpleStar.rxj

The following is an example of an animation, in which a “star shape” is created from a single
circle. The star will be drawn as filled ovals with a specific size and color. The circles will
move in a circular pattern starting from the given position of the window and gradually
increasing their distance from the center. As the circles move, they will leave a trail behind,
creating an animated effect.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

call addjdorhandler
address jdor
call bsf.import "java.lang.Math", "calc"

win_width = 500
win_height = 500
star_size = 50
speed = 1

color daylightlilac 158 124 243
winsize win_width win_height
new win_width win_height
background white
clearoval win_width win_height
winshow

color daylightLilac
centerX = win_width / 2
centerY = win_height / 2
radius = win_width / 4
angle = 0
delta_angle = .calc~toRadians(72) -- 360 degrees divided by 5 sides of the star
distance = 0

 do forever
 getState
 currX = centerX + .calc~cos(angle) * distance
 curry = centery + .calc~sin(angle) * distance
 goto currx curry
 fillOval star_size star_size
 angle = angle + delta_angle
 if angle > 2 * .calc~pi then angle = angle - 2 * .calc~pi
 distance = distance + speed
 if distance > radius then distance = 0

::requires "jdor.cls"

Figure 12: JDOR-PurpleStar.rxj

Initially, the code calls the "addJdorHandler" command to load the Java Rexx command
handler, and the "address jdor" command sets the default environment to JDOR. Then, the
"bsf.import" command is used to import the "java.lang.Math" class and its "calc" method.

The code proceeds to define variables such as "win_width" (window width), "win_height"
(window height), "star_size" (size of the star), "speed" (movement speed), and
"daylightLilac" (a specific color defined using RGB values).

The "winSize" command sets the size of the window based on "win_width" and
"win_height", followed by creating a new window using the "new" command with the same
dimensions. The "background white" command sets the background color of the window to
white, and the "clearOval win_width win_height" command clears any existing ovals from
the window. Finally, the "winShow" command displays the window.

Next, the code sets the current color to "daylightLilac" using the "color" command. The
variables "centerX" and "centerY" are calculated as the center coordinates of the window,
and "radius" is set to one-fourth of the window width (see lines 18-20). In lines 21 and 22,
the "angle" variable is initialized to 0, representing the starting angle of the star, and
"delta_angle" is calculated as the equivalent of 72 degrees in radians, which will be used to
increment the angle in each iteration. In line 23, the "distance" variable is set to 0,
representing the initial distance from the center.

Inside the infinite loop created by "do forever", the code calls the "getState" command to
retrieve the current state of the graphical window, which can be found starting in line 25.
The coordinates of the current star position are calculated based on the center coordinates,
the angle, and the distance from the center using the trigonometric functions provided by
the "calc" method (see lines 27 and 28). The "goto" command moves the drawing cursor to
the calculated position, and the "fillOval" command draws a filled oval with the specified star
size.

In line 31, the angle is incremented by "delta_angle," and if it exceeds 2π (full circle), it is
adjusted to keep it within the valid range. In line 33, the "distance" variable is increased by
the "speed" value, representing the distance traveled from the center. If the distance
exceeds the radius of the star pattern, it is reset to 0.

Figure 13: Output of JDOR-PurpleStar.rxj

5.2 Example 2 - JDOR-AffineTransformation.rxj

The following is an example of Affine Transformation. A red triangle shape will be created
and then applied transformations to make it rotate and scale.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

jdh=.bsf~new("org.oorexx.handlers.jdor.JavaDrawingHandler")
say "JDOR version:" jdh~version -- show version
call BsfCommandHandler "add", "jdor", jdh
address jdor

newImage 300 300 -- create new image
winShow -- show image in a window
winTitle "Affine Transform Demo (ooRexx)" -- set window's _tle

polygonXs="(20,0,40)" -- define three x coordinates for the triangle
polygonYs="(40,20,40)" -- define three y coordinates for the triangle
shape myP polygon polygonXs polygonYs 3 -- create triangle shape

translate 200 200 -- move origin (x=200, y=200)
scale 1.1 1.1 -- increase the triangle shape size 10%
rotate 20 -- rotate by 20 degrees
color red -- set color to red
do 20
 fillShape myP -- fill (and show) the triangle shape
 rotate 20
end
say 'Hit <enter> to proceed (end) ...'
parse pull data -- wait un_l user presses <enter> on the keyboard
::requires "bsf.cls"

Figure 14: JDOR-AffineTransformation.rxj

Let's break down the code given above:

A new image is created using the “newImage” command, specifying its dimensions as
300x300 pixels, which can be found in line 6. In line 7, the “winShow” command displays the
image in a window, making it visible to the user. In line 8 the “winTitle” command sets the
title of the window to "Affine Transform Demo (ooRexx)".

In lines 10 and 11, using the polygonXs and polygonYs variables, a triangle shape is defined
by providing three sets of x and y coordinates for its vertices. In line 12, the shape command
is used to create a shape object named myP using the defined triangle shape. Starting line
14, transformation commands are then applied to the shape. The translate command moves
the origin of the shape to the specified coordinates (200, 200). The scale command increases
the size of the shape by 10% in both the x and y directions. The rotate command rotates the
shape by 20 degrees.

In line 18, to create a rotating effect, a loop is initiated using the “do” command, which
repeats the enclosed commands a specified number of times (in this case, 20 times). Within

the loop, the “fillShape” command fills and displays the transformed triangle
shape, and the “rotate” command is used to rotate the shape by 20 degrees each time.

Figure 15: Output of JDOR-AffineTransformation.rxj

5.3 Example 3 - JDOR-CubePyramid.rxj

In the following example, a cube will be drawn, using the color "LemonLime." The rectangles
sides will be connected by drawing lines between corresponding vertices. Additionally, a
pyramid will be drawn with a front, back and side faces, using the color "peonypink," and its
sides will also be connected.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

-- Draw the Cube
--Crea_ng / Saving stroke
dashphase_stroke1=bsf.createJavaArrayOf("float.class", 15, 8, 15,8)
stroke stroke1 3 2 0 10 "dashphase_stroke1" 0
-- Draw the front face of the cube
color LemonLime
goto 50 50
stroke strokeA
drawLine 150 50
goto 150 50
drawLine 150 150
goto 150 150
drawLine 50 150
goto 50 150
drawLine 50 50
-- Draw the back face of the cube
goto 70 70
drawLine 170 70
goto 170 70
drawLine 170 170
goto 170 170
drawLine 70 170

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

goto 70 170
drawLine 70 70
-- Connect the corresponding ver_ces of the front and back faces
goto 50 50
drawLine 70 70
goto 150 50
drawLine 170 70
goto 150 150
drawLine 170 170
goto 50 150
drawLine 70 170

-- Draw the Triangle
-- Draw the front face of the triangle
color peonypink
goto 190 190
drawLine 290 190
goto 240 290
drawLine 190 190
goto 240 290
drawLine 290 190
-- Draw the back face of the triangle
goto 210 210
drawLine 310 210
goto 260 310
drawLine 210 210
goto 260 310
drawLine 310 210
-- Connect the corresponding ver_ces of the front and back faces
goto 190 190
drawLine 210 210
goto 290 190
drawLine 310 210
goto 240 290
drawLine 260 310

Figure 16: JDOR-CubePyramid.rxj (extract - complete code in Appendix -A2.5 JDOR-CubePyramid.rxj)

The code proceeds to draw a cube by creating a stroke pattern in line 14, represented by the
"dashphase_stroke1" array, which is then assigned to the "stroke1" stroke. Starting in line
17, the front face of the cube is drawn by setting the color to "LemonLime" (which was pre-
assigned and can be found in the fully code in Appendix A 2.5 JDOR- CubePyramid.rxj) and
using the "goto" and "drawLine" commands to connect the specified points. Similarly, the
back face of the cube is drawn starting line 27. The corresponding vertices of the front and
back faces are connected by drawing lines between them, in lines 37 - 44.

Following the cube, a pyramid is drawn using the color "peonypink”, starting from line 48.
Between lines 56 and 61 the front and back faces of the triangle are created using the "goto"
and "drawLine" commands, connecting the specified points. The corresponding vertices of
the front and back faces are then connected with lines using the “drawLine” command.

 Figure 17: Output of JDOR-CubePyramid.rxj

5.4 Example 4 - JDOR-RotatingSquare.rxj

In the following example, a black square will be created at the bottom of the window. As the
loop iterates, the square will be drawn at different positions and orientations, creating a
visual effect of a rotating square ascending through the window.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

call addJdorHandler
address jdor
-- crea_ng and showing a new window
new 500 500
winShow
-- define the ini_al size of the square
square_size = 50
-- set the rota_on angle
angle = 5
-- calculate the center coordinates of the window
center_x = 500 / 2
center_y = 500 / 2
-- calculate the star_ng posi_on of the square at the bodom of the window
square_x = center_x - square_size / 2
square_y = 500 - square_size
-- draw and rotate the square
do while square_y > 0
-- draw the square at the current posi_on
 goto square_x square_y
 drawRect square_size square_size
-- rotate the square
 rotate center_x center_y angle
-- update the posi_on of the square
 square_y = square_y - 1
 -- pause to observe the rota_on

26
27
28
29

 sleep 0.005
end
sleep 60
::requires "jdor.cls"

Figure 18: JDOR-RotatingSquare.rxj

The script defines the initial size of a square, setting the square_size variable to 50, in line 7.
It also assigns an angle of 5 to the angle variable in line 9, which will be used for rotation
calculations.

In lines 14 and 15, to determine the starting position of the square at the bottom of the
window, the script calculates the center coordinates of the window by dividing its width and
height (both set to 500) by 2. These coordinates are assigned to center_x and center_y. The
square_x coordinate is derived by subtracting half of the square's size from center_x, while
square_y is set to 500 minus the square's size.

Starting in line 17, the subsequent section of the code enters a loop that continues until the
square_y coordinate becomes less than or equal to 0. Within this loop, the script draws the
square at the current position using “goto” and “drawRect” commands. It then rotates the
square around the center of the window, specified by center_x and center_y, using the
“rotate” command. The position of the square is updated by decreasing the square_y
coordinate by 1, in line 24. To observe the rotation, the script introduces a brief pause using
the sleep 0.005 command in line 26. This loop iterates until the square reaches the top of
the window.

Figure 19: Output of JDOR-RotatingSquare.rxj

6. Conclusion

ooRexx is a programming language that offers a wide range of functionalities, making it
particularly beginner-friendly and easy to grasp. One of its strengths lies in its ability to
seamlessly integrate with other programs, opening up limitless opportunities for users. Such
as Java.

This seminar paper explored the application of JDOR, a BSF4ooRexx 850 extension, in ooRexx
programming to generate diverse 2D drawing programs. The combination of ooRexx and
JDOR with the BSF4ooRexx850 framework enables programmers, even those with limited
knowledge of ooRexx and Java, to create intricate and visually appealing drawings.

JDOR offers a user-friendly and efficient approach to 2D graphic creation by simplifying the
development process and allowing programmers to focus on their creative ideas. Integration
with the Java 2D API increases JDOR's capabilities, enabling the creation of 2D graphics that
respond to user input and provide an immersive experience. Java 2D API, when integrated
with JDOR, provides programmers with a comprehensive set of functionalities for graphic
creation and manipulation. The introduction of the JDOR command handler simplifies the
utilization of Java's awt 2D classes, allowing Rexx programmers to leverage the Java 2D API
without directly using Java code. Practical examples showcased in the paper demonstrate
the incremental growth and expansion of JDOR's capabilities.

Appendix
A 1. Installation Guide

To utilize JDOR with BSF4ooRexx850, firstly installing ooRexx is needed, which is essential for
working with BSF4ooRexx850 JDOR. The installation process is straightforward and user-
friendly, and an installer can be easily accessed on the ooRexx website:
https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0beta/

Secondly, to enable Rexx to interact with Java, it is necessary to install Java as well. The Java
installation can be completed using a readily available installer found on the Java website.
This installation process is similar to that of ooRexx and should pose no significant
challenges. Java can be downloaded from the following URLs: http://www.java.com ,
http://www.adoptOpenJDK.org

Once ooRexx and Java installations are completed, proceed with the installation of
BSF4ooRexx, a crucial component for utilizing the JDOR library. The BSF4ooRexx installer can
be downloaded from the project website:
https://sourceforge.net/projects/bsf4oorexx/files/beta/

After successfully installing ooRexx, Java, and BSF4ooRexx, you can verify the correctness of
the installations by executing the ooRexxTry.rxj program file. This file, included in the
BSF4ooRexx installation, tests the functionality of the setup. In case of any errors or issues,
you may need to troubleshoot the installation process or consult the project's
documentation and community for assistance.

Once the required files are confirmed to be in place, you can start using the Java2D Drawing
library.

A 2. Codes
A 2.1 JDOR-text.rxj

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

call addJdorHandler -- load
address jdor -- set default environment to JDOR

-- semng the colors
color enchan[ng 41 128 185
color warmSpring 60 154 242
color cerulean 24 117 227
color shallowSea 40 180 99
color lagoon 62 181 161
color mosaicTile 29 130 118

--Crea_ng and showing a new window
win_width = 500
win_height = 180
winSize win_width win_height
winShow

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

fontSize 14
fontStyle 1 -- 1=BOLD
font 14_Comic "Comic Sans MS"
goto 70 60
color black
font 14_Comic
drawString "font:"
stringBounds "font:"
parse var rc x " " y " " width " " height
say width
color black
drawLine 70+width 60
goto 270 60
drawString "text:"
stringBounds "text:"
parse var rc x " " y " " width " " height
say width
color black
drawLine 270+width 60

--create the 1st
fontSize 20
fontStyle 3 -- 3=BOLD+ITALIC
font 20_Bradley "Bradley Hand ITC"
goto 270 90
color shallowSea
font 20_Bradley
drawString "Dream big, work hard"
stringBounds "Dream big, work hard"
parse var rc x " " y " " width " " height
say width
color black
drawLine 270+width 90
goto 70 90
color enchan[ng
font 20_Bradley
drawString "Bradley Hand ITC:"
stringBounds "Bradley Hand ITC:"
parse var rc x " " y " " width " " height
say width

--create a 2nd
fontSize 18
fontStyle 1
font 18_Copper "Copperplate Gothic Light"
goto 270 120
color lagoon
font 18_Copper
drawString "Stay curious"
stringBounds "Stay curious"
parse var rc x " " y " " width " " height
say width
goto 70 120
color warmSpring
drawString "Forte:"
stringBounds "Forte:"
parse var rc x " " y " " width " " height

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

say width

--create a 3rd
fontSize 20
FontStyle 3
font 20_Colonna "Colonna MT"
goto 270 150
color mosaicTile
font 20_Colonna
drawString "Embrace the challenge"
stringBounds "Embrace the challenge"
parse var rc x " " y " " width " " height
say width
goto 70 150
color cerulean
font 20_Colonna
drawString "Colonna MT:"
stringBounds "Colonna MT:"
parse var rc x " " y " " width " " height
say width

SLEEP 40
::REQUIRES "jdor.cls"

A 2.2 JDOR-drawing.rxj

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

call addjdorhandler
address jdor
--Crea_ng and showing a new window
win_width = 500
win_height = 245
new win_width win_height
winshow
-- Set the color
color mulberry 192 69 161
-- Draw the ovals
goto 50 50
drawOval 40 40
goto 53 53
drawOval 60 60
goto 56 56
drawOval 80 80
goto 59 59
drawOval 100 100
goto 62 62
drawOval 120 120
goto 65 65
drawOval 140 140
goto 68 68
drawOval 160 160
-- Define the size of the rectangles
rect_width = 30
rect_height = 30

-- Set the ini_al posi_on for the first rectangle

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

start_x = 200
start_y = 5

-- Draw the padern of Sapphire colored rectangles
do i = 1 to 10
 -- Calculate the posi_on of the current rectangle
 rect_x = start_x + (i - 1) * rect_width
 rect_y = start_y + (i - 1) * rect_height

-- Fill the rectangle at the current posi_on with the random color
 goto rect_x rect_y
color sapphire 79 118 231
 fillrect rect_width rect_height
end

-- Define the size of the rectangles
rect_width = 30
rect_height = 30

-- Set the ini_al posi_on for the first rectangle
start_x = 230
start_y = 5
-- Draw the padern of orange rectangles
do i = 1 to 10
-- Calculate the posi_on of the current rectangle
rect_x = start_x + (i - 1) * rect_width
rect_y = start_y + (i - 1) * rect_height

-- Fill the rectangle at the current posi_on with the random color
goto rect_x rect_y
color orange
fillrect rect_width rect_height
end
sleep 60
::requires "jdor.cls"

A 2.3 JDOR-images.rxj

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

 call addJdorHandler -- load and add the Java Rexx command handler,
address jdor -- set default environment to JDOR

 --Crea_ng and showing a new window
win_width = 500
win_height = 308
winsize win_width win_height
winshow

 -- import the image
loadImage Pyramids_of_Giza "py.png" -- nickname and path
drawImage Pyramids_of_Giza

 -- draw and fill rectangle
color powderblue
goto 140 200
drawRect 60 40
fillRect 60 40

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

 -- draw and fill circle
goto 170 210
color thistle
drawOval 70 70
fillOval 70 70

 -- draw rectangle
goto 260 220
color tropicaldream
drawRect 70 70

 -- 1st Pyramid
fontSize16
fontStyle 1 -- 1=BOLD
font 16_Berlin_S "Berlin Sans FB"
color silkribbon
goto 50 100
drawString "MENKAURE"
stringBounds"MENKAURE"
parse var rc x " " y " " width " " height
say width
color citron
drawLine50 + width 100

 --2nd Pyramid
fontSize 32
font 32_Forte "Forte"
color blazeorange
goto 250 50
drawString "KHUFU"

 -- 3rd Pyramid
fontSize 24
font 24_Arabic_T "Arabic Typesegng"
color jamaicansea
goto 400 110
drawString "KHAFRE"

 --Saving the created image in the same directory
saveImage "Names_of_Giza_Pyramids.png"
sleep 40
::requires "jdor.cls"

A 2.4 JDOR-manipulate.rxj

1
2
3
4
5

 call addJdorHandler
address jdor
--Crea_ng and showing a new window
win_width = 350
win_height = 350

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

winSize win_width win_height
winShow

 --semng the colors
color coordinate_system 190 190 190 200
color middle 0 0 0 255
 --drawing the system
color coordinate_system
 do i=0 to win_width by 25
goto i 0
drawline i win_height
 end
 do i=0 to win_height by 25
goto 0 i
drawline win_width i
 end
color middle
goto win_width/2 0
drawline win_width/2 win_height
goto 0 win_height/2
drawline win_width win_height/2
-- Applying methods
-- draw two lines forming a big X
moveTo 70 80 -- currX=70, currY=80
 -- define and set color, register it with the name "pantone"
color pantone 0 206 209 127 -- R,G,B,alpha=127 (50 % transparency)
fillRect 50 50
color blue
drawRect 50 50
color blue
drawOval 50 50

translate 260 250
moveTo 0 0
rotate 45
color pantone
fillRect 50 50
fillOval 50 50
color blue
drawRect 50 50
color blue
drawOval 50 50

"goto 150 15"
drawPolygon 50 50
rotate 45
drawPolygon 50 50
rotate 45

goto 70 70
color orange
fillOval 40 40
"shear -1 0"
color pink
fillOval 40 40

say "press enter to end."; parse pull
sleep 400

::requires "jdor.cls"

A 2.5 JDOR-CubePyramid.rxj

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

call addJdorHandler
address jdor
-- Crea_ng and showing a new window
win_width = 350
win_height = 350
NEW win_width win_height
WINSHOW
-- Semng the colors
color LemonLime 228 192 0
color peonypink 235 117 145
-- Draw the Cube
--Crea_ng / Saving stroke
dashphase_stroke1=bsf.createJavaArrayOf("float.class", 15, 8, 15,8)
STROKE strokeA 3 2 0 10 "dashphase_stroke1" 0
-- Draw the front face of the cube
color LemonLime
goto 50 50
STROKE strokeA
drawLine 150 50
goto 150 50
drawLine 150 150
goto 150 150
drawLine 50 150
goto 50 150
drawLine 50 50
-- Draw the back face of the cube
goto 70 70
drawLine 170 70
goto 170 70
drawLine 170 170
goto 170 170
drawLine 70 170
goto 70 170
drawLine 70 70
-- Connect the corresponding ver_ces of the front and back faces
goto 50 50
drawLine 70 70
goto 150 50
drawLine 170 70
goto 150 150
drawLine 170 170
goto 50 150
drawLine 70 170
-- Draw the Triangle
-- Draw the front face of the triangle
color peonypink

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

goto 190 190
drawLine 290 190
goto 240 290
drawLine 190 190
goto 240 290
drawLine 290 190

-- Draw the back face of the triangle
goto 210 210
drawLine 310 210
goto 260 310
drawLine 210 210
goto 260 310
drawLine 310 210

-- Connect the corresponding ver_ces of the front and back faces
goto 190 190
drawLine 210 210
goto 290 190
drawLine 310 210
goto 240 290
drawLine 260 310

sleep 60
::requires "jdor.cls"

A 3. List of Figures

Figure 1 User Space Coordinate System ... 6
Figure 2: JDOR-text.rxj (extract- complete code in Appendix -A2.1 JDOR_text.rxj) 12
Figure 3: Output of JDOR-text.rxj ... 13
Figure 4: JDOR-drawing.rxj .. 14
Figure 5: Output of JDOR-drawing.rxj .. 15
Figure 6: JDOR-images.rxj (extract- complete code in Appendix -A2.3 JDOR-images.rxj) .. 17
Figure 7: Output of JDOR-images.rxj ... 17
Figure 8: JDOR-manipulate.rxj (extract- complete code in Appendix- A 2.4 JDOR-
manipulate.rxj) ... 19
Figure 9: Output of JDOR-manipulate.rxj ... 19
Figure 10: JDOR-move.rxj .. 21
Figure 11: Output of JDOR-move.rxj .. 21
Figure 12: JDOR-PurpleStar.rxj .. 22
Figure 13: Output of JDOR-PurpleStar.rxj .. 23
Figure 14: JDOR-AffineTransformation.rxj .. 24
Figure 15: Output of JDOR-AffineTransformation.rxj ... 25
Figure 16: JDOR-CubePyramid.rxj (extract - complete code in Appendix -A2.5 JDOR-
CubePyramid.rxj) ... 26
Figure 17: Output of JDOR-CubePyramid.rxj ... 27
Figure 18: JDOR-RotatingSquare.rxj .. 28
Figure 19: Output of JDOR-RotatingSquare.rxj .. 28

A 4. List of Tables

Table 1: JDOR commands ... 10

References

1. Blauensteiner, F. (2023). JDOR – An introduction to Java 2D’s drawing classes with
ooRexx and
BSF4ooRexx,https://wi.wu.ac.at/rgf/diplomarbeiten/BakkStuff/2023/202302_Blauen
steiner_JDOR.pdf

2. Cowell, J. (1999). The Abstract Windowing Toolkit. In: Essential Visual J++ 6.0 fast .
Essential Series. Springer, London. https://doi.org/10.1007/978-1-4471-0565-7_11

3. Flatscher, R. G. (2022b). BSF4ooRexx: Introducing the JDOR Rexx Command Handler

for Easy Creation of Bitmaps and Bitmap Manipulations on Windows, Mac and Linux
International RexxLA Symposium, 2022-09,
https://www.rexxla.org/presentations/2022/202209_JDOR_command_handler.pdf

4. Flatscher, R. G. (2023). Proposing ooRexx and BSF4ooRexx for Teaching Programming
and Fundamental Programming Concepts. ISECON23-Conference

5. Holt, W. (1999). THE EMBEDDED WINDOW TOOLKIT (Doctoral dissertation,
UNIVERSITY OF CALIFORNIA SANTA CRUZ).
http://alumni.soe.ucsc.edu/~wholt/thesis.pdf

6. https://dotnettutorials.net/lesson/abstract-windows-toolkit-awt-in-java/), 2022.

Abstract Windows Toolkit (AWT) in Java. Retrieved 10.04.2023 from
https://dotnettutorials.net/lesson/abstract-windows-toolkit-awt-in-java/

7. Oracle (o. D. -a). About the JFC and Swing. Oracle. Retrieved 15.05.2023 from
https://docs.oracle.com/javase/tutorial/uiswing/start/about.html

8. Oracle. (o.D.-b). Class Graphics2D. Oracle. Retrieved 10.04.2023 from
https://docs.oracle.com/javase/8/docs/api/java/awt/Graphics2D.html

9. Oracle. (o.D.-c). Coordinates. Oracle. Retrieved 05.05.2023 from

https://docs.oracle.com/javase/tutorial/2d/overview/coordinate.html

10. Oracle. (o.D.-d). Images. Oracle. Retrieved 05.05.2023 from
https://docs.oracle.com/javase/tutorial/2d/overview/images.html

11. Oracle. (o.D.-e). Lesson: Getting Started with Graphics. Oracle. Retrieved 01.05.2023
from https://docs.oracle.com/javase/tutorial/2d/basic2d/index.html

12. Oracle. (o.D.-f). Lesson: Overview of the Java 2D API Concepts. www.docs.oracle.com.

Retrieved 01.05.2023 from
https://docs.oracle.com/javase/tutorial/2d/overview/index.html

13. Oracle. (o.D.-g). Trail: 2D Graphics.Oracle Retrieved 20.05.2023 from

https://docs.oracle.com/javase/tutorial/2d/index.html

14. Oracle. (o.D.-h). Transforming Shapes, Text and Images. Retrieved 13.05.2023 from

https://docs.oracle.com/javase/tutorial/2d/advanced/transforming.html

15. Schäling, B. (2010). Programmieren in Java: Aufbau. www.highscore.de.

16. Sun-Microsystems. (1999). 1.2 Rendering Model. Nickerson Group at University of
Washington. Retrieved 15.05.2023 from https://nick-
lab.gs.washington.edu/java/jdk1.3.1/guide/2d/spec/j2d-intro.fm2.html

