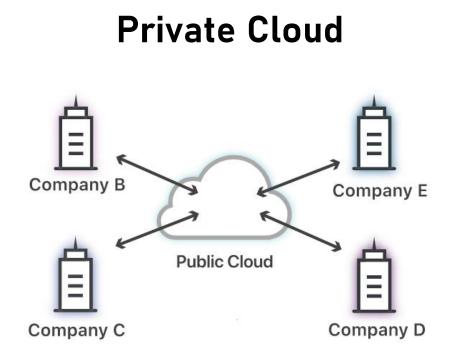


### CRITICAL **EVALUATION AND** COMPARISON BETWEEN **PROPRIETARY AND OPEN-SOURCE CLOUD SYSTEMS**

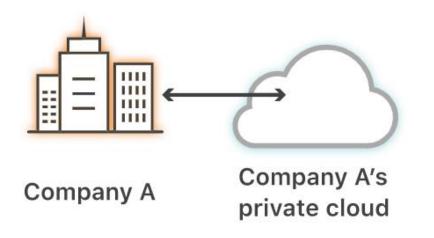
VIKTORIA PLUY SUMMER SEMESTER 2023

# OVERVIEW


- Cloud Systems
- Comparison between Proprietary and Open-Source Cloud Systems
  - Interoperability
  - Cost
  - Security
  - Innovation
  - Usability
  - Support
  - Ethical Aspects
  - Cloud Providers in 2023
- Critical Evaluation
- Development Trends

### CLOUD SYSTEMS

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction." – United States Government


- **On-demand Self Service:** Provisioning without interaction
- **Broad Network Access:** Provisioning through the Web
- **Resource Pooling:** Provisioning to multiple clients → Multitenancy
- **Rapid Elasticity:** Quick providing of services
- **Measured Services:** Monitoring of service utilization

### CLOUD SYSTEMS II



- Obtainable via the internet
- Managing and owning the data

### **Public Cloud**



- "Internal Cloud"
- Resources accessible to one user

# CLOUD SYSTEMS III

- Infrastructure as a Service (laas)
  - Provision of computing resources
  - Utilization of needed resources
  - Contract or pay-as-you-go
- Platform as a Service (Paas)
  - Offering of deployment platform for application
- Software as a Service (Saas)
  - Access to software applications
  - Payment based on consumption

# CLOUD SYSTEMS IV

- CLOUD Act (Clarifying Lawful Overseas Use of Data Act)
  - Adopted in March 2018
  - Rules for sharing user's data  $\rightarrow$  criminal proceedings
  - Background: Difficulties to acquire warrants/subpoenas
  - Foundation of CLOUD Act: Case of Microsoft Ireland
  - Bilateral agreements: UK and US  $\rightarrow$  Data Access Agreement
  - Conflict with European GDPR
  - No mutual agreement between US and EU



# PROPRIETARY & OPEN-SOURCE CLOUD

- Proprietary Cloud
  - Computing infrastructure maintained by one vendor
  - No modification of source-code
  - Subscription/licensing fees
- Open-Source Cloud
  - Publicly available source-code
  - Collaborative process
  - 1960/1970: Agreement to share source-codes  $\rightarrow$  Unix
  - 1980: GNU Project (Richard Stallman)  $\rightarrow$  Distribution & modifying
  - 1990: GNU/Linux
  - 2000: Investment into open-source projects

# COMPARISON - INTEROPERABILITY

### **Proprietary Cloud System**

- Uniquely used proprietary protocols
- Vendor Lock-in
- Re-adjusting when switching vendor
- Tools and API's for integration from vendor/third-party organizations

- Accessibility of source-code →
  Easier implementation
- Tackle interoperability as developer community

### COMPARISON - COST

### **Proprietary Cloud System**

- Licencing fees → Maintenance,
  Support
- Deployment → Hardware,
  implementation, acquisition
- Customization → Configuration and changes

- No licencing fees
- Deployment → Hardware, charge for add-ons
- Customization free →
  Community support

# COMPARISON - SECURITY

### **Proprietary Cloud System**

- "More secure" → Developing in controlled environment
- Quicker response to security breaches
- Need for high trust between vendor and customer
- Intense auditing by professionals

- Development by individuals globally
  → Shared responsibility
- Transparency as advantage for auditing → Collaborative process
- Fast response time → Twice as quickly compared to proprietary
- Integration of patches by the user  $\rightarrow$  Expertise needed

# COMPARISON - INNOVATION

### **Proprietary Cloud System**

- Investment into R&D
- Budget increase and expertise  $\rightarrow$ Innovation
- Online client groups  $\rightarrow$  Reviews
- Need to not become irrelevant →
  Profit-seeking

- Innovation through modification of source-code
- Collaborative process  $\rightarrow$  Innovation
- "Hidden innovation"

# COMPARISON - USABILITY

### **Proprietary Cloud System**

- Usability as competitive advantage
  → Abandonment
- Regular usability testing
- Distribution of support manuals/material

- Acknowledgment of usability
- Testing by user community → No developer bias
- Documentation over online-forum
- Ability to integrate other framework/tools

# COMPARISON - SUPPORT

### **Proprietary Cloud System**

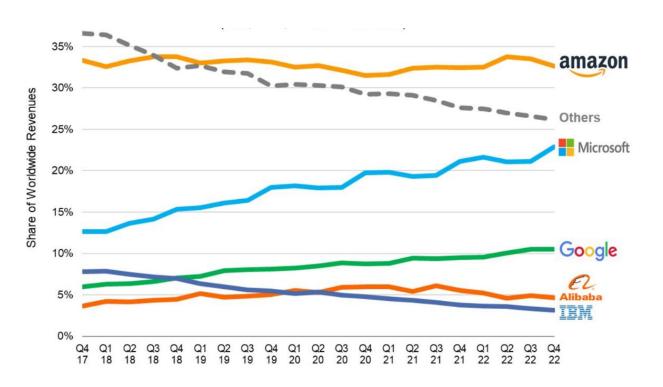
- Greatest competitive advantage
- Support via live chat/hotline/personal contact
- Immediate help

- Support through online community
- Collaborative process

# COMPARISON – ETHICAL ASPECTS

- Ethical considerations
  - Data
    - Data Privacy
    - Data Ownership
    - Data Security
  - Provider
    - Sustainable and green cloud computing
  - User
    - Individual Empowerment → Co-Creation/Co-Develop

# COMPARISON – ETHICAL ASPECTS


#### **Proprietary Cloud System**

- No ownership by the vendor →
  Granting ownership by the user
- Safety?  $\rightarrow$  CLOUD Act
- Need for significant energy resources → Strategies for CO2reduction
- Possibility for customization but no development

- Users maintain ownership
- Need for significant energy resources → Strategies for CO2reduction
- Easy to co-develop/co-create →
  Transparency of source-code

# COMPARISON - CLOUD PROVIDERS 2023

### **Proprietary Cloud System**



- OpenStack
  - Developed by NASA
  - Computing, storage
- Kubernetes
  - Developed by Google
  - Containerization capabilities
- CloudStack
  - Offering of laas
  - Supports AWS API's

# CRITICAL EVALUATION I

### **Proprietary Cloud System**

- Biggest asset → Service and
  Support
- Non transparency of source-code →
  Dependency on vendor
- Vendor lock-in
- Licencing fees

- Transparency of source-code
- High interoperability
- Online community
- No promise for support
- Strong expertise needed

# CRITICAL EVALUATION II

- Utilization of open-source cloud system more advantageous
  - Higher flexibility  $\rightarrow$  Customization, security, innovation, interoperability
  - Lower costs
  - Online community
  - Existing open-source alternatives
  - No vendor lock-in

# DEVELOPMENT TRENDS

#### • Artificial Intelligence

- Inclusion of AI into services
- Example → Chat GPT

#### • Serverless Computing

- "Serverless"
- Added layer of abstraction between platform and user
- Reduction of costs
- Multi- and Hybrid Cloud
  - Seeking to find the right balance
  - OpenStack: Environment with vendor neutrality
- Green and Sustainable Cloud Computing
- Increased Regulation



### CRITICAL **EVALUATION AND** COMPARISON BETWEEN **PROPRIETARY AND OPEN-SOURCE CLOUD SYSTEMS**

VIKTORIA PLUY SUMMER SEMESTER 2023