

Welthandelsplatz 1, A-1020, Wien

Telefon: +43/1/313 36/4622 ● Telefax: +43/1/313 36/717

Web: www.wu.ac.at/retail

SBWL: Business Information Systems

im WS 2022

ooRexx: Nutshell Examples for MS Word

 Oppermann Sabrina 11904962

PI-Leitung

ao.Univ.Prof. Dr. Rony G. Flatscher

Wien, 15.12.2022

Seminararbeit

Eigenständigkeitserklärung

für Seminararbeiten, Aufgaben, Reflexionen, Prüfung

Lehrveranstaltungsnummer: 0082 Semester: WS 2022/23

Lehrveranstaltung: SBWL BIS Kurs V: Seminar aus BIS (Skiseminar)

LehrveranstaltungsleiterIn: ao.Univ.Prof. Dr. Rony G. Flatscher

VerfasserIn: Sabrina Oppermann

Matrikelnummer: h11904962

Ich versichere / stimme zu:

1. dass ich die hochgeladenen Arbeiten, Aufgaben, Reflexionen sowie die
Prüfung selbstständig verfasst, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient
habe.

2. dass ich dieses Thema bisher weder im In- noch im Ausland (einer
Beurteilerin/einem Beurteiler zur Begutachtung) in irgendeiner Form als
Prüfungsarbeit vorgelegt habe.

Mit der Unterschrift nehme ich zur Kenntnis, dass falsche Angaben studien- und

strafrechtliche Konsequenzen haben können.

_____15.12.2022______ __________________________________

Datum Unterschrift

Table of Contents
1 Introduction .. 1

2 Overview .. 3

2.1 Rexx and ooRexx .. 3

2.2 BSF4ooRexx and BSF.CLS .. 5

3 Nutshell Examples .. 7

3.1 Basic Functionalities .. 7

3.1.1 How to Open MS Word and Create a Text ... 7

3.1.2 How to Create Headings ... 10

3.1.3 How to Save a Document ... 14

3.1.4 How to Reopen a Document ... 15

3.1.5 How to Get into Print Preview ... 17

3.2 Special Functionalities ... 19

3.2.1 How to Create a Table .. 19

3.2.2 How to Edit a Table ... 22

3.2.3 How to Insert an Image ... 24

3.2.4 How to Insert a Text from a Webpage .. 27

3.2.5 How to Encode an Inserted Text ... 29

4 Summary and Conclusion .. 32

5 Appendix .. 34

5.1 Table of Figures .. 34

5.1.1 Codes ... 34

5.1.2 Executed Codes .. 35

5.1.3 Figures .. 35

5.2 References .. 36

1

1 Introduction

This paper puts its focus on the programming language “ooRexx” in cooperation with

the program “MS Word” which is included in the proprietary office package “Microsoft

Office”.

After reading this seminar paper, the reader should have understood the basic usage

of MS Word through the ooRexx interface. In order to get a better comprehension,

nutshell examples are provided and explained adequately. Additionally, images not

only of the programming code but also of its resulting execution enable a visual

exemplification.

The structure of this paper consists of 5 main chapters. After the introduction, the

second chapter containing a brief overview of the used programming language is

provided. Additionally, the functional package “BSF4ooRexx” is introduced to the

reader and the related Rexx-package “BSF.CLS” is shortly explained. This should

allow the reader to completely understand the different nutshell examples which are

part of the third chapter. In turn, mentioned chapter is divided into 2 subchapters - each

one explaining five representative nutshell examples. The last content-related chapter

summarizes this paper in short and, subsequently, provides a conclusion. Last but not

least, the appendix containing the table of figures and literature register are closing

this work.

If the reader would like to execute the nutshell examples next to reading this paper, it

is recommended to download the used programming language. The language

“ooRexx” can be downloaded from the following website providing the most current

version 5.0.0 beta: https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0beta/.

Furthermore, the adequate version of BSF4ooRexx is needed to execute one of the

examples. In order to download this version, the subsequent link is to be opened and

respective program downloaded:

https://sourceforge.net/projects/bsf4oorexx/files/GA/BSF4ooRexx-641.20220131-

GA/. It has to be taken into account to fulfil all the necessary requirements a computer

needs in order to execute the program as well as download the suitable version for the

https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0beta/
https://sourceforge.net/projects/bsf4oorexx/files/GA/BSF4ooRexx-641.20220131-GA/
https://sourceforge.net/projects/bsf4oorexx/files/GA/BSF4ooRexx-641.20220131-GA/

2

respective operating system.

In addition, the proprietary version “MS Word” is needed. Either the user is a student

of the university “WU” and can download the “MS Office” package for free through the

inherent student account. Or the reader needs to buy the “MS Word” program on the

following website: https://www.microsoft.com/de-at/microsoft-

365/word?activetab=tabs%3afaqheaderregion3 .

https://www.microsoft.com/de-at/microsoft-365/word?activetab=tabs%3afaqheaderregion3
https://www.microsoft.com/de-at/microsoft-365/word?activetab=tabs%3afaqheaderregion3

3

2 Overview

This chapter deals with the basic knowledge about the programming language

ooRexx. It is thereby arranged into 2 subchapters. First, the reader is presented some

aspects regarding the development of ooRexx starting with Rexx. Afterwards, a short

insight about the external Rexx-function-package “BSF4ooRexx” and the ooRexx-

package “BSF.CLS” is given.

2.1 Rexx and ooRexx

Open Object Rexx (short ooRexx) is an open-source program which enables users to

profit from the free version of the programming language “Object Rexx”. The latter one

was originally published by the IT and consulting enterprise “IBM” as a proprietary,

follow-up version of “Rexx” (Flatscher, Automatisierung mit ooRexx und BSF4ooRexx,

2012, p. 4).

Putting the focus on the programming language “Rexx” for a while, Rexx was first

established in 1979 by Mike Cowlishaw who was working for IBM. His goal was ‘to

create a “human-centric” language’ (Flatscher, An Introduction to Procedural and

Object-oriented Programming (ooRexx), N.G., p. 5). Thereby this new language should

be an easy-to-learn and simplified version of other PL/I programming languages.

Therefore, Rexx is seen as an antecessor of TCI as well as Python. Originally, this

scripting language was intended to replace the programming languages “EXEC” and

“EXEC 2” (tutorialspoint, N.G.).

After facing some problems with patents, the original name “Rex” was turned into

“Rexx” (ProTech, N.G.). Therefore, “Rexx” is an abbreviation for “REstructured

eXtended eXecutor” (Flatscher, Procedural and Object-oriented Programming 1, 2022,

p. 5). Although this language might not be as known as others such as “C”, it provides

the user with a lot of useful features to learn and use Rexx in an easy way. Commands

based on the English language, a smaller number of rules and functions which are

already built-in are just a few examples of the various benefits of Rexx (Rexx Language

Association, 2015). In Figure 1 the logo of named programming language is presented.

4

Years later, IBM published the subsequent version called “Object Rexx” (acronym

“oRexx”). This version is to be object-oriented and as easy to handle as its

predecessor. Speaking of the latter, “oRexx” was created in a way which enables users

to still use the already existing Rexx program which was an important issue to a lot of

users (Flatscher, Automatisierungssprache Open Object Rexx 5.0 vor der Tür -

Menschenfreund, 2017). Moreover, another new feature is the possibility to command

multiple environments right from the Rexx interface (Rexx Language Association,

2015).

In 2005, the first open-source version named “ooRexx” was made available to the

public by the non-profit organization “Rexx Language Association” (acronym “RexxLa”)

in order to publish and develop the source code further. Moreover, named scripting

language is made available to the most important operating systems - Linux, Windows,

and MacOSX - in not only 32-Bit but also 64-Bit version (Flatscher, Automatisierung

mit ooRexx und BSF4ooRexx, 2012, p. 309). In Figure 2, the reader is presented the

typical logo of ooRexx.

Figure 1: Logo of Rexx -

 URL: https://upload.wikimedia.org/wikipedia/en/f/f7/Rexx-

img-lg.png

Figure 2: Logo of ooRex - URL:

https://avatars.githubusercontent.com/u/11

989843?s=280&v=4

5

Putting the focus on RexxLa, it was thereby founded to spread the knowledge about

Rexx. This international association has its headquarter situated in North Carolina and

members all over the world (RexxLa, N.G.).

12 years later, the most current version of ooRexx called “ooRexx 5.0” was released.

This new publication includes new features like an easier handling of arrays as well as

the processing of meta data with the help of annotations and RESOURCE-directives

(Förster, 2017).

2.2 BSF4ooRexx and BSF.CLS

Turning the focus to BSF4ooRexx, the end of the operating system IBM OS/2 led to

the intention to build a bridge for Rexx programmers to the operating systems of Linux

and Windows. The original purpose of BSF4ooRexx was to enable the access to the

programming language Java from all such platforms to save costs of investment.

After a successful proof-of-concept work in 2000, an external Rexx-function-package

was developed. This was achieved by applying the open Java-class-library “Bean

Scripting Framework of Apache Software Foundation” which was originally used by

IBM employees. The external function-package named “BSF4ooRexx” was born.

BSF4ooRexx is thereby an abbreviation for “Bean Scripting Framework for ooRexx”.

With the help of this package, the user is able to use its functionalities in Rexx. Next to

the ability of the “Augsburg” version for no need to interact with Java in a strictly typed

way, the “Vienna” version of BSF4ooRexx supplies the user additionally with the

feature of a support for Rexx for OpenOffice.org (Flatscher, Automatisierung mit

ooRexx und BSF4ooRexx, 2012, p. 312f).

In Error! Reference source not found. the new logo of this package is depicted. This

logo connects graphically both ooRexx and BSF through the combination of the

original logo of ooRexx and beans representing “BSF”.

6

In connection with the BSF4ooRexx package, the Rexx-package “BSF.CLS” enables

the user to interact with the programming language Java as easy as possible. Thereby

the user does not need to know the Java language itself. The whole Java-class-library

and the communication with Java-objects is presented as if a communication just

within ooRexx is taking place. A lot of advantages are therefore established. For

example, using BSF.CLS, all functionalities of Java are available to the ooRexx

programmer (Flatscher, Automatisierung mit ooRexx und BSF4ooRexx, 2012, p. 313).

Since the Java Runtime Environment is already installed on most of the computers,

the user just needs to download “BSF4ooRexx” additionally (Flatscher, "The 2009

Edition of BSF4Rexx", 2009, p. 2).

Figure 3: Logo of BSF4ooRexx, URL:

https://www.rexxla.org/images/BSF4ooRexx.png

https://www.rexxla.org/images/BSF4ooRexx.png

7

3 Nutshell Examples

This chapter consists of 10 nutshell examples controlling the Microsoft Office program

“Word” completely automatically via the respective ooRexx code. Those examples

form part of 2 chapters, namely “Basic Functionalities” and “Special Functionalities”.

Within each subchapter, a short explanation will first state the purpose of the example.

Afterwards, the respective code is provided to the reader and referred to continuously

by explaining the individual code lines and its resulting process. Last but not least, the

executed code is shown visually in pictures.

In the following subchapters different nutshell examples are explained to the reader.

All of them are in relation to the Microsoft Office program “MS Word”. Since this paper

does not comprise basic explanations of the Rexx language itself but only of those in

relation to the use of MS Word, it is recommendable to get familiar with the basic

functionalities of Rexx before continuing reading. In this case the following link is to be

clicked at to get to the IBM website containing information to the usage of Rexx:

https://www.ibm.com/docs/en/zos/2.1.0?topic=tsoe-zos-rexx-users-guide .

3.1 Basic Functionalities

In this chapter, the general basic functions of ooRexx in combination with MS Word

are stated. The following 5 nutshell examples present the way to open MS Word, create

a text in a document as well as headings, save it afterwards, reopen a saved document

and, finally, get into the print preview. After reading this chapter, the programmer is

able to use MS Word to, for instance, write essays or papers using stated features.

3.1.1 How to Open MS Word and Create a Text

Starting with opening MS Word and regulating the size of the appearing window, this

nutshell example deals with the respecting code. Additionally, the way of creating a

https://www.ibm.com/docs/en/zos/2.1.0?topic=tsoe-zos-rexx-users-guide

8

text within the new document is presented. Furthermore, the user is instructed in how

to edit a text in form and style.

Looking at the second line in Code 1 above, the command .oleobject is used.

OleObject is hereby a proxy-class which enables the user to command and interact

with various Windows-COM/OLE-programs (Flatscher, Automatisierung mit ooRexx

und BSF4ooRexx, 2012, p. 311). In this case the application “MS Word” is needed, so

the subsequent command ~new(“Word.Application”) is given to open a new Word

window. By creating a variable, the user must not repeat this first command to facilitate

1 /*open MS Word*/

2 word= .oleobject~new("Word.Application")

3 word~visible=.true

4 word~width=.true

5 word~height=.true

6

7 /*create new document*/

8 NewDocument= word~Documents~add

9

10 /*create text*/

11 SelectionObj=Word~Selection

12 SelectionObj~TypeText("This is an arbitrary text")

13

14 SelectionObj~TypeParagraph

15

16 /*edit text*/

17 EditText=SelectionObj~Font

18 EditText~Name="Papyrus"

19 EditText~size="20"

20 EditText~bold=.true

21 EditText~underline=.true

22 EditText~colorindex= 9

23 SelectionObj~TypeText("This text is edited")

Code 1: Nutshell Example 1 - How to Open MS Word and Create a Text

9

its usage. In the next step, the newly created window is to be made visible by using

the function word~visible=.true. Now, the window is displayed to the user and if

required the size of respective can be adjusted manually. This can be achieved by

using the commands word~width=… and word~height=… . In this example, the

window should take up the size of the entire screen. To enable a full screen the

commands regarding width and height must be set to .true. If a specific size is desired,

the user can enter the respective dimensions at will. Up to this part the programming

code is freely adjustable to any to-be-opened program needed by the user.

After opening an empty Word window, a new document has to be created. In order to

do so, the command word~Document~add is used and assigned to the variable

NewDocument. If the programming code is executed to this extend, the result equals

the manual clicking on the Word button on your desktop and opening of a blank sheet:

a new and completely empty Word document is created.

In the following step, content in form of a text is to be added to the document. By using

the code word~selection, which is written in line 12 in Code 1, the user gains access

to the document for any desired manipulation. In this example the corresponding

variable is named “SelectionObj”. With the help of the command ~TypeText(“…”) any

text construction may be entered to the document. In this case, the text “This is an

arbitrary text” is inserted in the document. When entering plain text without following

commands regarding text style, it is depicted in the standard “normal” style format of

MS Word. The first line in Executed Code 1 below shows the text after the performance

of the programming code.

If desired, any text can be edited. First, for a better overview, a paragraph is to be

entered after the first text. This is achieved by using the command ~TypeParagraph.

Now, continuing with editing, the command ~Font is applied to the variable

SelectionObj to gain access to the style features of the latter. This command is

allocated to the variable named EditText. In this example, the text “This is an edited

text” should be changed in style. First, the font style is to be altered to “Papyrus” and

size “20” by using the command ~Name and ~size (see Code 1, line 20 and 21).

Second, the commands ~bold and ~underline are set equal to .true in order to adapt

10

the text respectively. Last but not least, the color is to be changed to darkblue by using

~colorindex and the corresponding color-figure. The final result is seen in the second

line of Executed Code 1.

3.1.2 How to Create Headings

When writing an essay, the user needs to divide the text in chapters by using different

headings. In this nutshell example, the way to use pre-set style formats like “Title” and

“Heading” are explained. Furthermore, these styles are made adjustable to the user’s

likings by changing the font-size, -color, etc.

Executed Code 1: Nutshell Example 1

1 word=.oleobject~New("Word.Application")

2 word~visible=.true

3

4 NewDocument=word~Documents~add

5

6 /*Get style of the title*/

7 SelectionObj=word~selection

8 SelectionObj~Style="Title"

9 SelectionObj~TypeText("This is a Title")

10 SelectionObj~TypeParagraph

11

12 /*Get style of the first heading*/

13 SelectionObj~Style="Heading 1"

14 SelectionObj~TypeText("This is the first Heading")

Code 2: Nutshell Example 2a – How to Create Headings

11

Continuing with the inspection of the programming code in Code 2, the first four lines

to open a new document are already explained in the first subchapter. In the 7th line,

the code to gain access to the document itself is also already familiar. In the next step,

the style “Title” is selected by the command ~Style. Here, any desired style-name can

be entered like it is stated in line 13 using “Heading 1”. After classifying the style, the

corresponding text for the title and heading is to be put in. The result of this part of the

code is presented in Executed Code 2 below. As it is depicted, the standard style

format for the title and first heading are used.

In case the user is not satisfied with those pre-set style formats one can see in

Executed Code 2, the following code allows to adapt the style as desired. Not only the

font style but also the size, color and other characteristics can be edited at wish.

Executed Code 2: Nutshell Example 2a

12

First, ooRexx should select the sentences. To achieve this, the number of sentences

is to be counted and saved in the variable CountSentences by using the command in

line 18 of Code 3. Afterwards, access to the style features is gained and applied to the

variable Font. In the following line, a do-command is used to go through each sentence.

To pick the respective sentence in the document, the expression ~select is executed.

Now, each sentence is selected one after the other. In the next step, the program

should identify whether a sentence is a title, a heading or neither. After selecting one

sentence, the respective style name is to be recognized by using the code in line 24.

16 /*Adapt each style*/

17 /*count the sentences*/

18 CountSentences=newDocument~Sentences~Count

19 Font=SelectionObj~Font

20 do SentenceNumber= 1 to CountSentences

21

22 /*change each style*/

23 newDocument~Sentences(SentenceNumber)~Select

24 StyleName=SelectionObj~Style~NameLocal

25 Select case StyleName

26 when "Title" then do

27 Font~Name="Bahnschrift"

28 Font~Size="30"

29 Font~Colorindex= "10"

30 Font~bold=.true

31 Font~underline=.true

32 end

33 when "Heading 1" then do

34 Font~Name="caladea"

35 Font~Size="20"

36 Font~italic=.true

37 end

38 otherwise NOP

39 end

40 end

Code 3: Nutshell example 2b - How to Create Headings

13

Now, the aim is to only format the sentence if the style is either “Title” or “Heading 1”.

This can be achieved by using select case StyleName in combination with a when-

then-do-condition. The latter specifies what to do when the selected sentence is a

“Title”, a “Heading 1” or neither of both.

In the example given, the font style, the size, the color of the “Title” is changed and

turned into bold and underlined. Whereas the style of “Heading 1” only differs from the

original format in regard to the font style, size and italics. This function is particularly

useful if headings in a long text are to be changed not individually but all together by

identifying whether it is a text to be changed or not. In the following figure Executed

Code 3, the output of Code 3 is depicted.

Executed Code 3: Nutshell Example 2b

14

3.1.3 How to Save a Document

After being able to open Word, create a text and edit it, the user wants to save the

document in most cases. This part of the paper deals with saving a document in a

predetermined location on the user’s computer.

The programming code in Code 4 can be added to any ooRexx code involving MS

Word. First, the location where the document should be saved must be determined. In

this regard, access to the respective environmental variable is needed. The user, in

this case, wants to save the document on the desktop of the PC. Therefore, the

environmental variable “UserProfile” has to be addressed by using the command

Value(). Now, the access to this part of the computer is granted. In the next command

line 3, the path as well as the name of the document is specified. As already mentioned,

the document is to be saved on the user’s desktop. Hence, the path contains now-

available “UserProfile”, “Desktop” and the name of the document “Nutshell_Example”.

This determined path is accessed via the variable “FileName” which is eventually used

to save the document with the command ~SaveAs() in line 12 of the figure above. The

saved document is now available on the desktop as it is depicted in Executed Code 4.

Last but not least, the document closes itself after the saving process through the

command ~Quit.

1 /*Choose location to save document*/

2 Dir = Value("UserProfile",, ENVIRONMENT)

3 FileName= Dir || "\Desktop\" || "Nutshell_Example"

4

5 /*save document*/

6 NewDocument~SaveAs(FileName)

7 Word~Quit

8

Code 4: Nutshell Example 3 - How to Save a Document

15

3.1.4 How to Reopen a Document

Next to saving a created document, the user might wish not only to open a completely

new document but also an already created document which has been saved on the

computer for further usage.

Executed Code 4: Nutshell Example 3

1 /*open MS Word*/

2 word=.oleobject~new("Word.Application")

3 word~visible=.true

4

5 /*reopen a document*/

6 Dir= Value("UserProfile",,ENVIRONMENT)

7 FileName= Dir || "\Desktop\" || "Nutshell_Example.docx"

8 OldDocument=word~Documents

9 OldDocument~Open(FileName)

10

Code 5: Nutshell Example 4 - How to Reopen a Document

16

In order to reopen a document, two major steps have to be gone through. First, MS

Word needs to be opened by using the already familiar command .oleobject among

other things (see line 2 and 3 in Code 5). Second, ooRexx needs the path of the desired

document to be able to open it. In this example, the document saved in chapter “3.1.3

How to Save a Document” is to be reopened. Therefore, access to the UserProfile

must be granted (line 6) and the complete path including the file name needs to be

stated (line 7). However, it is to be noted that the file name must contain the respective

ending of the file format. In this case, since the desired document is a Word document,

the corresponding type is “.docx”. If the user is uncertain about the format, it is

discovered easily by inspecting the properties of the document. After determining the

path, ooRexx informs MS Word about a document to be opened. In this regard, an

already known command is used in a slightly modified way: word~Documents. By

omitting the ~add command, ooRexx specifies to not open a new document but an

existing one. Finally, the document is to be reopened by using ~open() in combination

with the path identified before. Executed Code 5 shows the result of this programming

code – a reopened document.

Executed Code 5: Nutshell Example 4

17

3.1.5 How to Get into Print Preview

Last but not least, the user might want to print a created document after saving it. But

before starting the printing process, the document must be checked if it is adequately

formatted. The best way to perform it, is to activate the print preview in MS Word. This

nutshell example intends to demonstrate this process.

In the first step, a document needs to be opened. Either the user can create a new

one, as displayed in Code 6, or reopen an existing one. The instruction of the latter

one is explained in chapter “3.1.4 How to Reopen a Document”. Afterwards, an active

document is created to activate the Print Preview by using the command

~ActiveDocument (line 10 in Code 6). In order to understand the significance of an

active document, Microsoft provides an explanation:

[…] active documents have complete control over their pages, and the full interface of

the application (with all its underlying commands and tools) is available to the user to

edit them (ghogen & et al, 2021).

In the continuous step the window is activated in the same way as the active document

is done. The active window is then used to get access to the zoom option in the print

preview of MS Word. Using the command

ActiveWindow~ActivePane~View~Zoom~Percentage=… the degree of zoom can be

specified. In this nutshell example, the zoom is to be at 100% for 2 seconds for

7 NewDocument=word~Documents~add

8

9 ActiveDocument = Word~ActiveDocument

10 ActiveDocument~PrintPreview

11 ActiveWindow = Word~ActiveWindow

12 ActiveWindow~ActivePane~View~Zoom~Percentage = "100"

13 Call Syssleep 2

14 ActiveDocument~ClosePrintPreview

Code 6: Nutshell Example 5 - How to Get into Print Preview

18

demonstration purposes. Latter is commanded by applying call syssleep. The result is

depicted in Executed Code 6. Finally, the print preview is closed by using the command

in line 14.

Executed Code 6: Nutshell Example 5

19

3.2 Special Functionalities

After getting to know the basic usage of ooRexx in MS Word, the nutshell examples

will turn more specific. The following subchapters enable the advanced application of

ooRexx to control MS Word. Thereby ways to create and edit tables, to insert local

images and texts from webpages, as well as encode these texts are stated and

explained to the reader.

3.2.1 How to Create a Table

This nutshell example is about how to insert a table in a Word document and enter text

into the respective cells. Three different ways to achieve the latter are presented to the

user. In this example, a table containing information about the number of credits gained

each semester per year is created for visual illustration.

In the first step, a new document is created in the already familiar way presented in

chapter “3.1.1 How to Open MS Word and Create a Text” above. Continuing with line

5 of Code 7, access to the document is enabled by creating a selection object. After

1 word=.oleobject~new("Word.Application")

2 word~visible=.true

3 NewDocument=Word~Documents~Add

4

5 SelectionObj=word~Selection

6 /*get an active document object */

7 ActiveDoc= word~ActiveDocument

8 /*create a table*/

9 ActiveDoc~Tables~Add(SelectionObj~Range,4,3)

10

Code 7: Nutshell Example 5a - How to Create a Table

20

an active document is generated and assigned to the variable “ActiveDoc”, a table is

to be inserted. Thereby the commands ~Tables~Add(SelectionObj~Range,4,3) are

referred to the just created variable. The numbers in the parentheses determine the

number of rows and columns. In this example the table will consist of 4 rows and 3

columns.

Up to now, the programming code inserts a completely empty table to the document

without consisting of any borders or shading. When entering a text, the user can

choose between 3 options. Each of those will be explained in the following.

11 /* fill in table*/

12 /* first option*/

13 SelectionObj~Tables(1)

14 SelectionObj~TypeText("Year")

15 SelectionObj~MoveRight

16 SelectionObj~TypeText("First Semester")

17 SelectionObj~MoveRight

18 SelectionObj~TypeText("Second Semester")

19

20 SelectionObj~MoveRight

21

22 /*second option*/

23 do i=2020 to 2022

24 SelectionObj~TypeText(i)

25 SelectionObj~MoveRight

26 do 2

27 SelectionObj~TypeText(random(30))

28 SelectionObj~MoveRight

29 end

30 end

31

32 /* third option*/

33 ActiveTable=ActiveDoc~Tables(1)

34 ActiveTable~Cell(1,1)~Range~Text="YEAR"

35

Code 8: Nutshell Example 5b - How to Create a Table

21

In order to start with the first one, the right table must be selected by the command

~Tables(). Thereby the figure in parentheses determines which table is to be chosen.

Now to reach the preferred cell, the command SelectionObj~MoveRight is used to pass

one cell after the other from the left to the right side . When the desired cell is selected,

text is entered by ~TypeText(“…”). In the example given, line 14 to 18 of Code 8 enter

text into the first row of the table.

A second option includes a loop. In case of using consecutive numbers, they can be

easily entered with the command do… to … . The programming code in Code 8

consists of a double loop to fill out all remaining cells in one turn. In the first loop the

year is entered. After one date, random numbers are entered in the next two cells by

using a second loop (line 25 to 28) and so on.

Last but not least, text can be entered specifically by determining the desired cell. To

do this, the table needs to be activated by commanding ActiveDoc~Tables(). At this

point, any cell can be selected, and text entered. In the example given, the text in the

cell of the first row and column is to be changed to capitals using

~Cell(1,1)~Range~Text=”YEAR”. Executed Code 7 presents the result of the

programming code of Code 7 and Code 8.

Executed Code 7: Nutshell Example 5

22

3.2.2 How to Edit a Table

The topic of this chapter describes how to edit a table. Since the last nutshell example

just enables to create a basic table without any borders or shading, this one is about

adjusting the table to the user’s preferences. However, not only will the table itself be

edited but also the respective text in the cells. This example is a continuation of the

former nutshell example (Code 7 and Code 8) in order to be able to distinguish the

differences in a better way.

Starting with line 36 to 38 of Code 9, the borders are to be added to the table. Since

access to the table is needed, named must be activated in the first place. Afterwards,

the user can adjust the borders at will using the command

~Borders~InsideLineStyle=.true for the inner borders and

35 /*edit borders*/

36 ActiveTable=ActiveDoc~Tables(1)

37 ActiveTable~Borders~InsideLineStyle=.true

38 ActiveTable~Borders~OutsideLineStyle=.true

39

40 /*change background color*/

41 EditTable=SelectionObj~Tables(1)

42 EditTable~Shading~BackgroundPatternColorIndex="10"

43

44 /*change background color of cell*/

45 do i=1 to 4

46 EditTable~Cell(i,1)

 ~Shading~BackgroundPatternColorIndex="8"

47 end

48

49 /*adapt space between cells*/

50 ActiveTable~Spacing="5"

51

Code 9: Nutshell Example 6a - How to Edit a Table

23

~Borders~OutsideLineStyle=.true for the outer borders. In this example, the user

activated both types for better representation.

With reference to the coloring of the table, advantage of the SelectionObj is taken. In

terms of changing the background color, ~Tables()~Shading is added to determine the

next step. Thereby the color can be chosen with the command

~BackgroundPatternColorIndex=”…” . But not only the background of the whole table

can be changed but also the one of each cell individually. To achieve that, the correct

cell has to be specified with ~Cell(row, column). Thereafter, the same command as

used for the background color of the table is used. In the example given, the

background of the table is defined as teal (line 42) and the one of the cells in the first

column white (line 45 - 47)

Continuing editing the cells, the space between each one can be adjusted using

ActiveTable~Spacing=”…”. The number in quotation marks specifies the size of the

distance - the greater the figure, the greater the space. As it is shown in Executed

Code 8 at the end of this chapter, a gap parts two cells.

Up to this point, the user is able to edit the table at will. However, the text is still

presented in standard format. To change the style of a text, the variable ActiveTable is

needed as well as the command ~Cell(row, column) to define the desired cell and

~Range. Then, any command referring to the font style used in chapter “3.1.1 How to

52 /*change font size and style*/

53 do i=1 to 3

54 ActiveTable~Cell(1,i)~Range~Font~Size="16"

55 ActiveTable~Cell(1,i)~Range~Font~Name="Arial Bold"

56 end

57

58 /*change font color*/

59 do i=2 to 3

60 do n=1 to 4

61 ActiveTable~Cell(n,i)~Range~Font~Colorindex="8"

62 end

63 end

Code 10: Nutshell Example 6b - How to Edit a Table

24

Open MS Word and Create a Text” can be entered. For instance, in line 54 of Code 10

the size of the text is changed by adding ~Font~Size=”…”. In the same way the font

type as well as the color are edited in this nutshell example (line 55 and 61).

3.2.3 How to Insert an Image

In many cases, images are needed to be positioned in a document to enable a better

understanding of the reader or just put emphasize on a statement. The relevant code

Executed Code 8: Nutshell Example 6

1 word= .oleobject~new("Word.Application")

2 word~visible=.true

3

4 NewDocument= word~Documents~add

5

6

7 Dir= Value("UserProfile",,ENVIRONMENT)

8 FileName= Dir || "\Pictures\" || "WU_Logo.png"

9

10 /*Add picture*/

11 ActiveDoc= word~ActiveDocument

12 ActiveDoc~InlineShapes~AddPicture(FileName)

13

 Code 11: Nutshell Example 7a - How to Insert an Image

25

to open saved pictures in a Word document is stated in the following chapter.

Additionally, to round off this topic about pictures in MS Word, the way to crop them

adequately is presented.

In order to add a picture, a new document must be created. Afterwards, access to the

respective environment is to be enabled by using the same commands as in chapter

“3.1.4 How to Reopen a Document” when a saved document is reopened. In this

example, the relevant image is saved in the folder “Pictures” named “WU_Logo”. The

respective image format must be stated as well, so, ooRexx knows which file type is to

be opened (see line 8 in Code 11). In the next step, an active document is created and

referred to with the commands ~InlineShape~AddPicture(…). The former created path

of the saved picture is inserted in the empty brackets. Now, the program gets the

information where to receive the image from and enters latter in the created document

(Executed Code 9).

 Executed Code 9: Nutshell Example 7a

26

Sometimes, the inserted picture needs some adjustments made by the user. In order

to do so, access to the format of the picture is enabled by using the command

~Inlineshapes(1)~PictureFormat on the activated document in line 16 of Code 12. In

this nutshell example, the command is saved as the variable “ActivePic”.

Subsequently, the image can be cropped at will applying ~CropBottom, ~CropLeft,

~CropRight and ~CropTop to the code. Thereby the measurements are in relation to

the original size of the picture and in points. Executed Code 10 presents the picture

after being cropped to only the written part of the logo.

14

15 /*Crop the picture*/

16 ActivePic=ActiveDoc~InlineShapes(1)~PictureFormat

17 ActivePic~CropBottom=10

18 ActivePic~CropLeft=150

19 ActivePic~CropRight=0.5

20 ActivePic~CropTop=40

 Code 12: Nutshell Example 7b - How to Insert an Image

Executed Code 10: Nutshell Example 7b

27

3.2.4 How to Insert a Text from a Webpage

After this chapter, the reader will be able to copy an arbitrary text into a MS Word

document. However, it has to be mentioned that only specific websites are useable for

this process. Either the webpage grants open access to any user, or the respective

API is known. Providing a short excurse, API is an acronym for “Application

Programming Interface”. It acts as an intermediary and allows 2 different programs to

interact with each other (N.G., 2022). To get the API from a website, there are several

lists on the internet, stating websites with public APIs. An example for such a website

is provided in the following: https://mixedanalytics.com/blog/list-actually-free-open-no-

auth-needed-apis/ .

Figure 4: Nutshell Example 8 - Paragraph to Copy –

URL: https://list.ly/list/m-best-european-cities-to-visit

https://mixedanalytics.com/blog/list-actually-free-open-no-auth-needed-apis/
https://mixedanalytics.com/blog/list-actually-free-open-no-auth-needed-apis/
https://list.ly/list/m-best-european-cities-to-visit

28

First, a text on a website must be chosen. In this nutshell example, a short paragraph

about the city Kraków from the website “Listly” was selected (see Figure 4).

The respective link is to be saved and used in combination with the command curl in

line 3 of Code 13. Curl is an acronym for “Client URL” and grants access to resources

from the internet (Flatscher, Procedural and Object-oriented Programming 6 -

Commands, 2022, p. 18).

In line 6 the webpage is addressed, and its standard-output and standard-error are

redirected to the created arrays in the ooRexx program. Afterwards the output-array is

converted into a plain string. The command PARSE VAR is used to receive the

selected paragraph of the webpage. Due to inserting the respective html code, the

position of the text, which is to be saved, is specified.

In order to display the paragraph in a Word document, the already known command to

enter a text is used in combination with the variable of the saved text in line 17. As in

Executed Code 11 presented, the desired paragraph is inserted in a document.

1 /*using curl*/

2 url="https://list.ly/list/m-best-european-cities-to-

 visit/"

3 command= "curl" url

4 outArr=.array~new

5 errArr=.array~new

6 ADDRESS SYSTEM command WITH OUTPUT USING (outArr) ERROR

 USING (errArr)

7 html=outArr~makeString

8 /*get content*/

9 PARSE VAR html '<h2 class="ly-item-title"

 title="Krakow">' . '<div class="item_note wbreak

 ly-markdown"><p>' content '</p>'

10

11 /*open MS Word*/

12 word= .oleobject~new("Word.Application")

13 word~visible=.true

14 NewDocument=word~Documents~add

15 /*insert content in MS Word*/

16 SelectionObj=word~Selection

Code 13: Nutshell Example 8 - Inserting a Text from a Webpage

29

3.2.5 How to Encode an Inserted Text

In the previous nutshell example “3.2.43.2.43.2.4 How to Insert a Text from a

Webpage”, the output of the code displays the selected paragraph of the website.

However, as it is observable, special characters are not correctly inserted (see

Executed Code 11). This is on account of the different codepages provided. To start

with, ooRexx is able to work with UTF-8 (codepage 65001) used in different text

sources (Flatscher, ooRexx and Unicode, 2010, p. 1). In contrast, MS Word only

supports texts encoded in codepage 1252. Hence, MS Word might not completely

process the entered data correctly. This nutshell example deals with this problem and

presents a suitable solution.

Executed Code 11: Nutshell Example 8

30

The programming code presented in Code 14 continues in line 11 provided in Code

13. First, the codepage supported by MS Word needs to be discovered by using the

command ~textEncoding. In this example, the respective output corresponds with

codepage 1252. In line 20, the text in UTF-8 is converted to the codepage 1252 to

enable its correct presentation in a Word document.

In order to take advantage of the command bsf.iconv, the external function package

BSF4ooRexx needs to be downloaded first. Afterwards the package BSF.CLS needs

to be activated. As in chapter “2.2 BSF4ooRexx and BSF.CLS” stated, this package

enables the programmer to use Java without knowing the respective codes in this

programming language (Flatscher, Automatisierung mit ooRexx und BSF4ooRexx,

2012, p. 313).

11 /*open MS Word*/

12 word= .oleobject~new("Word.Application")

13 word~visible=.true

14 NewDocument=word~Documents~add

15

16 say "textEncoding:" newDocument~textEncoding

17

18 /*insert content in MS Word*/

19 SelectionObj=word~Selection

20 newcontent=bsf.iconv(content, "utf-8","cp1252")

21 SelectionObj~TypeText(newcontent)

22

23 parse pull

24

25 ::requires "BSF.CLS"

Code 14: Programming Code - Nutshell Example 9

31

As in Executed Code 12 displayed, the text is now correctly inserted except for the

word in phonetic spelling. This can be explained by the amount of the character set of

codepage 1252. Latter only provides 256 characters. Thereby it might be the case that

a character is not included in this amount of provided characters. So, a similar

presentation of the latter is intended by using available characters (Flatscher, E-Mail

Exchange, 2022).

Executed Code 12: Nutshell Example 9

32

4 Summary and Conclusion

In the first part of this paper a short introduction of ooRexx is given. To sum up, the

open-source program Open Object Rexx was published by the international, non-profit

organization “RexxLa” in 2005. Thereby the program in question is an extension of the

follow-up version of “Rexx” and was originally a proprietary program called oRexx.

Rexx was developed in 1979 in order to create a language with the focus on the user.

In other words, this programming language should be easy to learn. The commands

are based on the English language and a small amount of rules and functions are just

a few examples of how this was achieved.

ORexx, on the other hand, is object-oriented and used to command multiple

environments.

With the development of BSF4ooRexx, a bridge to Linux and Windows was created

with the help of “Bean Scripting Framework”. A special functionality is provided by the

application of BSF.CLS. With the help of this extension, the user is able to use Java

through ooRexx without knowing former language.

Continuing with the second part, the most important functionalities of ooRexx in

combinational usage with MS Word are stated. Starting with the basic functionalities,

5 nutshell examples are demonstrated to the reader. The first two deal with the

respective ways to open the program MS Word and insert an arbitrary text into a new

document as well as create headings. Hereby,.oleobject and Selection are the key

commands to make the codes work. In the following examples, the document is to be

saved and reopened using commands to get access to the local computer.

Last but not least, the print preview of a document should be opened by using

ActiveDocument.

Afterwards, the special functionalities regarding ooRexx are presented in another 5

nutshell examples. Those are about creating and adjusting tables, inserting an image

from the local computer as well as a text from a website. Finally, the inserted text is to

be encoded in the last example. In those nutshell examples, commands like

ActiveDocument and Selection dominate the majority of the examples given. Further

33

important commands include curl and ADDRESS SYSTEM to copy external texts and

bsf.iconv to change the codepage.

In conclusion, ooRexx is a multi-functional program which is especially useful and easy

to learn for beginners. The ability to combine it with other programs in order to use

those, provides endless possibilities to the user. However, this programming language

is unfortunately not as popular in the programming world as it should be regarding its

various features. Nevertheless, it has great potential which might lead to extended

usage if successfully disseminated.

34

5 Appendix

This chapter states not only the listing of the figures used in this paper but also the

references regarding the citations.

5.1 Table of Figures

In the following subchapters, the used figures of codes, executed codes and other

depicted images are listed with their names and the respective page.

5.1.1 Codes

Code 1: Nutshell Example 1 - How to Open MS Word and Create a Text 8

Code 2: Nutshell Example 2a – How to Create Headings .. 10

Code 3: Nutshell example 2b - How to Create Headings ... 12

Code 4: Nutshell Example 3 - How to Save a Document ... 14

Code 5: Nutshell Example 4 - How to Reopen a Document 15

Code 6: Nutshell Example 5 - How to Get into Print Preview 17

Code 7: Nutshell Example 5a - How to Create a Table .. 19

Code 8: Nutshell Example 5b - How to Create a Table .. 20

Code 9: Nutshell Example 6a - How to Edit a Table ... 22

Code 10: Nutshell Example 6b - How to Edit a Table ... 23

Code 11: Nutshell Example 7a - How to Insert an Image ... 24

Code 12: Nutshell Example 7b - How to Insert an Image ... 26

Code 13: Nutshell Example 8 - Inserting a Text from a Webpage 28

file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030339
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030340
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030341
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030342
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030343
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030344
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030345
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030346
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030347
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030348
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030349
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030350
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030351

35

Code 14: Programming Code - Nutshell Example 9 ... 30

5.1.2 Executed Codes

Executed Code 1: Nutshell Example 1 ... 10

Executed Code 2: Nutshell Example 2a ... 11

Executed Code 3: Nutshell Example 2b ... 13

Executed Code 4: Nutshell Example 3 ... 15

Executed Code 5: Nutshell Example 4 ... 16

Executed Code 6: Nutshell Example 5 ... 18

Executed Code 7: Nutshell Example 5 ... 21

Executed Code 8: Nutshell Example 6 ... 24

Executed Code 9: Nutshell Example 7a ... 25

Executed Code 10: Nutshell Example 7b ... 26

Executed Code 11: Nutshell Example 8 ... 29

Executed Code 12: Nutshell Example 9 ... 31

5.1.3 Figures

Figure 1: Logo of Rexx - URL: https://upload.wikimedia.org/wikipedia/en/f/f7/Rexx-

img-lg.png ... 4

Figure 2: Logo of ooRex - URL:

https://avatars.githubusercontent.com/u/11989843?s=280&v=4 4

file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030352
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030353
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030354
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030355
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030356
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030357
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030358
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030359
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030360
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030361
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030362
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030363
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030364
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030365
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030365
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030366
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030366

36

Figure 3: Logo of BSF4ooRexx, URL:

https://bach.wu.ac.at/d/media/cache/71/72/71725205a8f51921e894b891daae94b4.jp

g .. Error! Bookmark not defined.

Figure 4: Nutshell Example 8 - Paragraph to Copy – URL: https://list.ly/list/m-best-

european-cities-to-visit ... 27

5.2 References

Flatscher, R. G. (2009). "The 2009 Edition of BSF4Rexx". Vienna, Vienna, Austria.

Retrieved November 23th, 2022, from

https://wi.wu.ac.at/rgf/rexx/orx20/2009_orx20_BSF4Rexx-20091031-article.pdf

Flatscher, R. G. (2010). ooRexx and Unicode. Retrieved November 9th, 2022, from

https://wi.wu.ac.at/rgf/rexx/tmp/20110215-Unicode/_readme-20101115.pdf

Flatscher, R. G. (2012). Automatisierung mit ooRexx und BSF4ooRexx. In

Proceedings der GMDS 2012 / Informatik 2012 (pp. 1-12). Braunschweig.

Flatscher, R. G. (2017). Automatisierungssprache Open Object Rexx 5.0 vor der Tür -

Menschenfreund. Retrieved November 20th, 2022, from Heise Magazin:

https://www.heise.de/select/ix/2017/11/1509749512323037

Flatscher, R. G. (2022). E-Mail Exchange. (S. Oppermann, Interviewer) Retrieved

November 8th, 2022

Flatscher, R. G. (2022). Procedural and Object-oriented Programming 1. Vienna,

Austria. Retrieved November 24th, 2022

Flatscher, R. G. (2022). Procedural and Object-oriented Programming 6 - Commands.

Vienna, Austria. Retrieved November 7th, 2022

file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030367
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030367
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030367
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030368
file:///C:/Users/Sabsi/Desktop/BIS%20Kurs%205/ooRexx%20-%20Nutshell%20examples%20for%20MS%20Word.docx%23_Toc122030368

37

Flatscher, R. G. (N.G.). An Introduction to Procedural and Object-oriented

Programming (ooRexx). Vienna, Austria.

Förster, M. (2017). Open Object Rexx 5.0: Mainframe-Klassiker für die Zukunft.

Retrieved November 20th, 2022, from heise online:

https://www.heise.de/ix/meldung/Open-Object-Rexx-5-0-Mainframe-Klassiker-

fuer-die-Zukunft-3888609.html

ghogen, & et al. (2021). Active Document Containment. Retrieved October 30th, 2022,

from Microsoft: https://learn.microsoft.com/en-us/cpp/mfc/active-document-

containment?view=msvc-170

N.G. (2022). What is an API? (Application Programming Interface). Retrieved

November 7th, 2022, from MuleSoft:

https://www.mulesoft.com/resources/api/what-is-an-api

ProTech. (N.G.). REXX Programming Language: What it is, Where it's Used, and Why

You Should Care. Retrieved December 10th, 2022, from ProTech:

https://www.protechtraining.com/blog/post/rexx-

programming#:~:text=REXX%20programming%20or%20Restructured%20Ext

ended,is%20known%20for%20its%20efficiency.

Rexx Language Association. (2015). About Open Object Rexx. Retrieved November

29th, 2022, from ooRexx: https://www.oorexx.org/about.html

RexxLa. (N.G.). The Rexx Language Association. Retrieved December 10th, 2022,

from Rexxla: https://www.rexxla.org/rexxla/about.srsp

tutorialspoint. (N.G.). Rexx - Overview. Retrieved December 10th, 2022, from

tutorialspoint: https://www.tutorialspoint.com/rexx/rexx_overview.htm

