
Vienna University of Economics and Business

Seminar Paper

CSS: Concepts, Architecture, Nutshell

Examples, Outlook

Author: Marina Wustinger

Matriculation Number: h11802099

Seminar aus BIS (Schiseminar) - 0082

Term: WS22/23

Submitted on 15th of December 2022

Instructor: ao.Univ.Prof. Mag. Dr. Rony G. Flatscher

1

Abstract

This seminar paper handles the styling language CSS, its history, key concepts,

implementation and further provides examples of CSS in use. The stylesheet language

offers an enormous amount of properties used to style a document. The newest

versions even offer some features which can be used to make a web design

responsive, assuring a flexible and adjustable style. After a short introduction into CSS

and its beginnings, an overview of CSS concepts is given, followed by commonly used

CSS architectures and the possibilities of implementing CSS into HTML. Next, some

examples are used to illustrate CSS properties and features. Lastly, the paper is

concluded with a brief summary as well as an outlook regarding the future of CSS. An

understanding of HTML and its elements is needed to understand the examples.

After reading this paper the reader should have a basic knowledge of CSS and be

familiar with the main concepts of it. Further they should be able to apply some

common CSS properties to an HTML document.

2

Declaration of Authorship

I assure:

▪ to have individually written, to not have used any other sources or tools than

referenced and to not have used any other unauthorized tools for the writing of

this seminar paper.

▪ to never have submitted this seminar paper topic to an advisor neither in this,

nor in any foreign country.

▪ that this seminar paper matches the seminar paper reviewed by the advisor.

Date: December 15th, 2022

Signature Marina Wustinger:

3

Table of Content

Abstract .. 1

Declaration of Authorship ... 2

1 Introduction to CSS .. 7

1.1 History ... 7

1.2 How CSS works in the Browser ... 8

2 An Overview of CSS Concepts ... 10

2.1 Syntax and Rules .. 10

2.2 Selectors ... 11

2.2.1 Basic Selectors ... 11

2.2.2 Combinators .. 12

2.2.3 Pseudo-classes and Pseudo-elements ... 13

2.2.4 Attribute Selectors ... 13

2.2.5 Specificity .. 14

2.3 Units .. 14

2.3.1 Absolute Units ... 14

2.3.2 Relative Units .. 15

2.4 The Box Model .. 15

2.5 CSS Layout ... 17

2.5.1 Normal Flow .. 17

2.5.2 Flexbox ... 17

2.5.3 Grids ... 18

2.5.4 Floats .. 18

2.5.5 Positioning .. 18

2.6 Custom Properties ... 19

2.7 ARIA and Automatic.CSS .. 19

4

3 CSS Architecture .. 21

3.1 Commonly Used Architectures .. 21

3.2 Which Architecture Should be Used? .. 22

4 Implementation of CSS in HTML .. 23

4.1 Inline Styles ... 23

4.2 Embedded Styles .. 23

4.3 External Stylesheets .. 23

4.4 How to Create an External Stylesheet Using Chrome and Visual Studio Code

 24

5 Nutshell Examples .. 26

5.1 Simple Examples – Travel Bucket List .. 26

5.1.1 How to Apply and Change the Colour of Text and Background 26

5.1.2 How to Style a Document Using Common Text Properties 27

5.1.3 How to Change the Font Style .. 29

5.1.4 How to Use Box Model Properties .. 30

5.1.5 How to Put a Shadow on an Element ... 31

5.1.6 How to Create a Hover Effect ... 31

5.1.7 How to Position Elements ... 32

5.2 More Complex Examples – Advent Calendar .. 32

5.2.1 How to Create a Layout Using Flexbox ... 32

5.2.2 How to Create a Transition ... 33

5.2.3 How to Rotate an Element .. 34

5.2.4 How Make the Design Responsive Using Media Queries 34

6 Conclusion and Outlook ... 36

References ... 37

Appendix ... 40

5

List of Tables

Table 1.. 12

Table 2.. 13

Table 3.. 14

Table 4.. 15

List of Figures

Figure 1 .. 16

Codes

Code 1 ... 23

Code 2 ... 23

Code 3 ... 24

Code 4 ... 24

Code 5 ... 26

Code 6 ... 27

Code 7 ... 27

Code 8 ... 27

Code 9 ... 27

Code 10 ... 28

Code 11 ... 28

Code 12 ... 28

Code 13 ... 29

Code 14 ... 29

Code 15 ... 29

Code 16 ... 30

Code 17 ... 30

Code 18 ... 31

Code 19 ... 31

6

Code 20 ... 32

Code 21 ... 32

Code 22 ... 33

Code 23 ... 33

Code 24 ... 34

Code 25 ... 34

Code 26 ... 34

Code 27 ... 35

Code 28 ... 40

Code 29 ... 42

Code 30 ... 44

Code 31 ... 45

Code 32 ... 47

7

1 Introduction to CSS

CSS stands for Cascading Style Sheets, it is a “domain-specific, declarative

programming language” (The Evolution of CSS in 3 Decades, n.d.), used in front-end

web development to transform documents written in a markup language such as HTML

into beautiful looking website by giving one the ability to control how the elements

should be presented to the user in the bowser regarding their layout, style, etc. (What

Is CSS? - Learn Web Development | MDN, 2022) Same as HTML, CSS is standardized

by the World Wide Web Consortium – W3C. It as an open-source standard,

independent and free to use. (Kumar, 2022)

The following chapters will present a short summary of the history of CSS, the key

concepts, and lastly simple and more complex examples of CSS in use.

1.1 History

The history of CSS has its beginnings in 1994. The web was getting used more and

more as an electronical publishing platform, but there was no way of styling the

documents. So, Hakon Wium Lie invented a stylesheet language to solve the problem

and Cascading Style Sheet – CSS – was born. (A Brief History of CSS Until 2016, n.d.)

The Arena web browser was the first browser that Lie tested CSS on. Later, in

collaboration with Tim Berners-Lee and Robert Cailliau, they created CSS1 and CSS2.

CSS soon became an official web standard, influencing look and accessibility of the

world wide web. If not for CSS, the web would look very simple and assumably boring.

In fact, the web would not be able to exist as known today. (CSS History, n.d.)

Without browsers, CSS would have simply been a sublime proposal. For this reason,

browsers play a big role in the history of CSS, with the Microsoft Internet Explorer 3

being the first commercial browser to support CSS, followed by Netscape Navigator

version 4.0 and later Opera. (A Brief History of CSS Until 2016, n.d.)

Over the years, W3C has been controlling and developing CSS features. They divided

CSS into several profiles and levels. Profiles represent a subgroup of one or more

levels. Now, the profiles listed are for mobile devices, television sets and printers. In

1996, CSS1 was released and after some corrections republished in 1999. CSS2 was

8

built on CSS1 and released in 1998, it supports various output media. (CSS History,

n.d.)

The differences between CSS1, CSS2 and CSS3 can be seen in the features, added

with each release. CSS1 first allowed the user to make changes to the colour, font

style and size of the background and text. With CSS2, abilities to design the page

layout were added. In 1999, CSS3 came with features, that allowed the user to choose

from an even greater range of fonts and create presentations from documents. In

addition, the user could now integrate rounded borders and multiple columns. W3C is

continuously improving and adding new features to CSS, instead of releasing a

completely new version. Hence, CSS4 is happening, however it will very likely never

bear the name of CSS4. (CSS History, n.d.)

1.2 How CSS works in the Browser

In order for the browser to display the webpage, the document gets processed in a

number of different stages.

1. The HTML document is loaded by the browser.

2. The HTML document is converted into a DOM – Document Object Model, which has

a similar structure to a tree with each element, attribute, and pieces of text becoming

a DOM node in the tree. Every DOM node can be defined by its relationship to the

other nodes.

3. In this stage the browser will fetch most resources which are linked to by the HTML

document, this can be embedded videos or images, and even other style sheets.

4. Now the browser analyses the previously fetched CSS and sorts it into different so

called buckets in regard to their selector types. Based on the selectors, the browser

will then apply the respective rules to the nodes in the DOM and attach the required

styles to them. This step in this stage can also be called a render tree.

5. Next, the render tree will be laid out according to the structure it should appear in.

6. Lastly, the visual display of the webpage will be shown on the screen.

(How CSS Works - Learn Web Development | MDN, 2022)

Should the browser encounter any CSS it does not understand, it simply moves on to

the next bit of CSS, meaning it ignores anything it does not comprehend. This can

happen when a user does not use the latest version of a certain browser, but also when

9

a browser does not support a new feature of CSS. (How CSS Works - Learn Web

Development | MDN, 2022)

10

2 An Overview of CSS Concepts

The following chapters give a rough overview of the main CSS concepts, architectures,

how CSS works in the browser and finally how CSS can make websites more

accessible.

2.1 Syntax and Rules

“A CSS Syntax rule consists of a selector, property, and its value. The selector points

to the HTML element where CSS style is to be applied. The CSS property is separated

by semicolons. It is a combination of selector name followed by the property: value pair

that is defined for the specific selector.” (GeeksforGeeks, 2022)

The Syntax, also referred to as rulesets or rules, therefore looks like the following:

selector { property: value;}

There are over 100 different properties and an even larger number of values. Each

property defines exactly which values are valid, in other words, what properties can be

paired with which values. Should a value not be compatible with a certain property, the

declaration will be deemed invalid, further leading to the CSS engine to completely

ignore it. Properties and Values are case-sensitive and need to be separated using a

colon : , while white spaces are usually ignored. (Syntax - CSS: Cascading Style

Sheets | MDN, 2022)

This Syntax rule makes up the main building blocks of a stylesheet, but in order to use

other information such as another external stylesheet, which needs to be imported or

a character set, at-rules are needed. As the name already indicates, each statement

starts with a @ directly followed by an identifier and a rule. (Syntax - CSS: Cascading

Style Sheets | MDN, 2022)

The Syntax using at-rules could look like the following: @import ‘somefile.css’;

For a specific subset of at-rules, a specific group of statements is needed called nested

statements. They only apply when a certain condition is met. Such a nested statement

is for example @media which is used for targeting the styles to specific screens or

simply when the document is printed. (Syntax - CSS: Cascading Style Sheets | MDN,

2022)

11

2.2 Selectors

CSS selectors select the HTML elements to which the styles are supposed to be

applied to. There are five categories of selectors: basic selectors, combinators

selectors, pseudo-class selectors, pseudo-element selectors and lastly attribute

selectors. When selecting elements, more than one selector can be used. (CSS

Selectors - CSS: Cascading Style Sheets | MDN, 2022)

2.2.1 Basic Selectors

The basic selectors include the most commonly used selectors, listed in Table 1.

Name Description Syntax

Type Selector Uses the HTML

element/tag names to

select the HTML

elements.

element/tag_name { property:

value;}

Universal Selector Illustrated by an asterisk

*, selects everything in

the HTML document,

which is why it can be

used to make global

changes, such as

making the overall font

bold.

* {property: value;}

Class Selector Starts with a dot . and is

followed by the class to

be selected. Everything

in the HTML document

with that class applied to

will be selected and

styled accordingly.

.class_name {property:

value;}

12

ID Selector Starts with a # and

selects the element with

the ID, following after

the # . Can be combined

with a type selector.

#id_name {property: value;}

element/tag_name#id_name

{property: value;}

Table 1 – Basic Selectors (CSS Selectors - CSS: Cascading Style Sheets | MDN, 2022)

2.2.2 Combinators

In order to explain the relationship between two selectors, CSS uses combinators listed

in Table 2, which indicate the relationship using certain characters between the two

selectors. (CSS Selectors - CSS: Cascading Style Sheets | MDN, 2022)

Name Description Syntax

Descendant Selector Indicated by a single

space character and

using the second

selector selects those

elements that have an

ancestor element which

matches the first

selector.

ancestor_element

descendant element

{property: value;}

Child Selector Specifically targets those

elements selected by the

second selector that are

a direct child to the

elements selected by the

first using > .

Parent_element >

child_element {property:

value;}

Adjacent Sibling

Selector

Selects only those

elements selected by the

second selector that are

directly preceded by the

preceding_element +

adjacent_element {property:

value;}

13

elements selected by the

first selector using + .

General Sibling Selector Selects sibling elements

that are not immediately

following, so any

elements selected by the

second selector coming

anywhere after the

elements selected by the

first selector using ~ .

sibling_element ~

following_sibling_element

{property: value;}

Table 2 – Combinators (CSS Selectors - CSS: Cascading Style Sheets | MDN, 2022)

2.2.3 Pseudo-classes and Pseudo-elements

Pseudo-classes act like a class that has been applied to an element of the document,

in order to reduce the number of classes in the markup, which provides a more flexible

and maintainable code. The syntax looks like the following: element:pseudo-class-

name They are used to specify a certain state for a targeted element, which could be

:active, :checked, but also :first-child, :last-child, etc. (Pseudo-classes and Pseudo-

elements - Learn Web Development | MDN, 2022)

In order to style only a specific part of a selected element a keyword, a so-called

pseudo-element is added to the selector. The syntax looks like the following:

element::pseudo-element-name (Pseudo-classes and Pseudo-elements - Learn Web

Development | MDN, 2022)

2.2.4 Attribute Selectors

Attribute Selectors are used when selecting an element with a certain attribute or

attribute value. There are many different types of attribute selectors, some commonly

used ones are listed in Table 3. (CSS Selectors - CSS: Cascading Style Sheets | MDN,

2022)

Name Description Syntax

14

[attr] Selects every

element with

specified attribute.

element/tag_name[attribute]

{property: value;}

[attr=value] Selects elements

with a specified

attribute and value.

Element/tag_name[attribute=”value”]

{property: value;}

[attr~=value] Selects elements

with an attribute

value including a

specified word.

[attribute~=”value”] {property: value;}

Element/tag_name[attribute~=”value”]

{property: value;}

Table 3 – Attribute Selectors (CSS Selectors - CSS: Cascading Style Sheets | MDN, 2022)

2.2.5 Specificity

The specificity algorithm is used by a browser in order to decide which CSS declaration

holds the most relevancy to an element. It also calculates the importance of a CSS

selector when using more than one to determine which rule to apply first. ID selectors

hold the most relevancy followed by class, attribute, and pseudo-class selectors and

lastly by type and pseudo-element selectors. The specificity can be overwritten using

!important but, if possible, this should be avoided. (Specificity - CSS: Cascading Style

Sheets | MDN, 2022)

2.3 Units

When setting a property for an element or its content, CSS units can be used to indicate

its size. There are two different categories: absolute and relative units.

2.3.1 Absolute Units

Using an absolute unit for a property signifies that its size will remain the same, no

matter the size of the window or parent element, which means pages using absolute

units will not scale when the size of the screen changes. These units are therefore

preferred when the responsiveness is of no importance for a project. (Mitchell, 2020)

15

Absolute Units include cm (centimetre), mm (millimetre), in (inches), pt (points), px

(pixels), with 1px being equivalent to 0.75pt and pc (picas), with 1pc being equivalent

to 12pt. Pixels are the most common used absolute unit for screens, while cm, mm and

in are more popular for print. (Mitchell, 2020)

2.3.2 Relative Units

When creating responsive sites, that scale according to the window size or parent

element, relative units are very useful. In general, it is recommended to use relative

units as the default in order to avoid later having to update the styles for different

screens. Table 4 lists the three most common used relative units.

Relative Unit Description Use-Case Examples

%

Relative to parent

element’s value for that

property

The child element should

have x% of the parent’s

width as a margin.

em
Relative to the current

font-size of the element

The font of a child

element should be half

the size of its parents’

font-size.

rem
Relative to the font-size of

the root

The font-size should be

twice the size as the root

element’s font.

Table 4 – Relative Units (Mitchell, 2020)

2.4 The Box Model

Each element is presented as a box by the rendering engine of a browser. The box

model describes how those elements regarding their content, padding, border, and

margin of a box, as seen in Figure 1, are combined to construct the box that can be

viewed on a page. The shorthand properties padding, border and margin can be used

to size the box. (Introduction to the CSS Basic Box Model - CSS: Cascading Style

Sheets | MDN, 2022)

16

The content area is limited by the content edge and displays any content like text or

an image. If the element is a block element and the property box-sizing is set to the

default value content-box, the content area can be sized using properties such as

width, max-width, height, and min-height. (Introduction to the CSS Basic Box Model -

CSS: Cascading Style Sheets | MDN, 2022)

Figure 1 - The Box Model (https://static.javatpoint.com/csspages/images/css-box-model.png)

The content area is extended by the padding area which is limited by the padding edge

and contains the padding of the element which creates space around an elements

content. Padding properties such as padding-top and padding-right condition the

thickness of the area. (Introduction to the CSS Basic Box Model - CSS: Cascading

Style Sheets | MDN, 2022)

The border area wraps around the previous two and contains the border of the element.

Shorthand border properties determine the thickness of the border and should the

property box-size be set border-box, it is possible to further define the border area’s

size using properties such as width, min-width, height, or max-height. The background

of a box will extent to the out edge of the border, with the prerequisite that the box has

a set background such as an image or colour. (Introduction to the CSS Basic Box

Model - CSS: Cascading Style Sheets | MDN, 2022)

In order to separate the element from its neighbouring element the border area is

extended by a margin area, which includes an empty space that is limited by the margin

edge. The margin area can be sized using margin properties such as margin-top and

17

margin-left. If the margin is not clearly determined margin collapsing will occur, which

combines the top and bottom margin of a block into one, which will be the size of the

largest lone margin. (Introduction to the CSS Basic Box Model - CSS: Cascading Style

Sheets | MDN, 2022)

2.5 CSS Layout

The browser represents each element as a box when laying out the document. There

are two types, block boxes and inline boxes, which refer to how the box will act in

regard to page flow and other boxes on the same page. Each box contains an outer

display type of block, such as the HTML elements <h1> or <p>, or of inline, such as

the HTML elements <a> or , and an inner display type. (Introduction to the CSS

Basic Box Model - CSS: Cascading Style Sheets | MDN, 2022) CSS offers several

layout options and techniques which can be changed using the display property with

the layout option as the value. The following layout methods are the most commonly

used ones.

2.5.1 Normal Flow

If no specific layout is specified the elements will lay out according to the normal flow

of the webpage with regards to their margin, border, and padding, see chapter 2.4. The

content of block level elements will fill out the available inline space of their parent

element and the size of the block while the size of inline elements is limited to the size

of the content, meaning the height and width cannot be set for inline elements apart

from images. Using the display property, the size of inline elements can be controlled

by setting it to inline-block which will cause it to act like a block level element. (CSS

Layout - Learn Web Development | MDN, 2022)

2.5.2 Flexbox

Flexbox, a one-dimensional layout method, is used when laying out items in either a

row or columns and cause items to stretch or shrink to fill out the available space. The

flex model consists of a main-size axis running from left to right, also referred to as

main start to main end and a cross-size axis running from top to bottom, also referred

to as cross start to cross end. It provides the opportunity of vertically and horizontally

centring blocks of content inside their parents. In order to use flexbox properties, the

18

parent element, also called container needs to have the property display set to flex.

(Flexbox - Learn Web Development | MDN, 2022)

2.5.3 Grids

Grids, a two-dimensional layout method, lay out the content in rows and columns. This

method will prevent elements from jumping around or changing their widths when

moving from one page to the next. A container including the child elements which

should be laid out in a grid needs to include the display property set to grid. Next, the

grid-template-column property needs to be specified within the container to enable the

grid layout by setting up the widths of the columns. Further gaps between the boxes

can be set by the shorthand property gap which takes in first the gap between rows

and columns. (CSS Layout - Learn Web Development | MDN, 2022)

2.5.4 Floats

To create multiple column layout the property float can be used. The element

containing the float property will be taken out of the normal flow of a page and set to

where the value specified which can be left or right for example. The remaining content

of the page will simply wrap around the floated element and continue its normal flow.

To stop the following element from wrapping around the floated one the clear property

can be applied to the following element which will push it below the floated one. Should

both elements be wrapped in one block for example a <div> the clear property will not

work. Instead, the clearfix hack needs to be used. This means that some generated

content needs to be insert first after the block containing the float and the content

wrapping around it and then clear needs to be set to both. An alternative to this is to

use the overflow property and setting it to auto. (CSS Layout - Learn Web Development

| MDN, 2022)

2.5.5 Positioning

The CSS position property defines the way an element is positioned with its values and

the properties left, right, top, and bottom determining their final location in a document.

The value static positions an element in relation to the normal flow of the given

document. The value relative positions an element relative to its normal position with

an offset determined by the values left, right, top, and bottom. This offset does not

affect any other elements. If the element should be taken out of the flow of the

19

document, it is positioned absolute. Its position is relative to its closed positioned

ancestor. This results in other elements being positioned as if it was not existent and

therefore causing the element to potentially overlap with others. When the position of

an element is set to fixed it will be positioned relative to the viewport causing it to stay

in that exact place when scrolling along the page. An element can also be sticky, which

means it is positioned according to ones scroll position. It is a mixture of relative and

fixed positioning, meaning it will act as if relatively positioned up until a given offset

position is reached, then it will stick in place. (Position - CSS: Cascading Style Sheets

| MDN, 2022)

2.6 Custom Properties

CSS custom properties, also referred to as CSS variables, are defined by the

developer and contain certain values which are to be reused in multiple places across

the stylesheet. This is often the case for complex websites with large amounts of CSS

with repeating values. CSS variables store these values in one single place which can

then be referenced throughout the CSS. Custom property notation, such as --main-

color:white; is used to specify the CSS variables and the function var() is used to

access them which would look like the following: color: var(--main-color); The

declaration always uses a double hyphen -- followed by a custom property name and

a valid CSS property value. (Using CSS Custom Properties (Variables) - CSS:

Cascading Style Sheets | MDN, 2022)

These custom properties also come with the benefit of sematic identifiers. For example,

--main-headings-color would then substitute using #ff00ff later on which is easier to

understand. (Using CSS Custom Properties (Variables) - CSS: Cascading Style

Sheets | MDN, 2022)

2.7 ARIA and Automatic.CSS

ARIA stands for Accessible Rich Internet Applications and defines various roles and

attributes, which have the purpose of making web content and applications more

accessible for people with disabilities. (ARIA - Accessibility | MDN, 2022)

Automatic.css is a utility CSS framework, which applies these ARIA for CSS by

providing utility classes and CSS variables, essentially offering automatic features to

make a website more accessible to different users. (Geary, 2022a)

20

For example, the typography system, which refers to all text and headings being

automatically responsive by using relative units, as they are scalable and can be of a

great advantage when the user makes changes in their browser preferences for

example to increase the default text size due to issues with their eyesight. Websites

using absolute units opposed to relative ones will not respond according to those

changes, as they are static units. (Geary, 2022a)

Many users also rely on colour contrast in order to see the information on a website.

Automatic.css uses a strong colour system with auto-generated shades, which also

gives you the ability to adjust them along with the lightness values and saturation.

(Geary, 2022b)

Another way this CSS framework provides accessibility is by hiding certain elements

from regular users while preserving those exact elements for accessibility users. For

example, a certain icon might be enough for a regular user, a label naming the icon is

not necessarily needed for them, but for those users using a screen reader, labelling

icons is an absolute must. Automatic.css is equipped with a .hidden-accessible class

which uses certain techniques to hide the content from specific users while at the same

time providing it for those using a screen reader. (Geary, 2022b)

The Automatic.css framework comes with many more features giving one the ability to

build an accessible website, such as automatic grids, variable hooks, and a spacing

system. (Geary, 2022a)

21

3 CSS Architecture

A CSS architecture can be regarded as a set of guidelines and is essential for every

project in order to work efficiently, keep the stylesheet with a consistent, reusable, and

maintainable code. It gives CSS a clear structure and makes working on a project much

more efficient especially once the project starts to grow. There are many different

architectures but every single one tries to achieve efficiency in slightly different ways.

Some of the most used architectures include OOCSS – Object Oriented CSS, BEM –

Block Element Modifier, ACSS – Atomic CSS and SMACSS – Scalable and Modular

Architecture for CSS. (Petrovic, 2022)

3.1 Commonly Used Architectures

Object Oriented CSS applies object-oriented concepts to CSS and follows two key

principles, the first being the separation of structure and skin. In this context structure

refers to the styles impacting the layout, while skin refers to any styles impacting the

elements, such as colours or font styles. The second principle, the separation of

container and content, indicates that you should avoid location-specific styles.

(Petrovic, 2022)

Block Element Modifier or BEM makes use of a consistent naming convention for the

creation of style classes applied to elements in the HTML document. This makes it

possible to write independent CSS blocks which provide reusable code. The

architecture specifically recommends the following naming convention: block-

name_element-name--modifier-name. An example could look like the following:

.fruits__price--large It is important to remember to only use BEM with classes, not with

IDs. (Holden, 2021)

The focus of Atomic CSS lies in creating various small CSS utility classes, which can

then be used in the HTML document. ACSS has similarities to OOCSS, as it also

proposes separating duplicated property-value pairs, but ACSS definitely uses a more

extreme approach to this technique by suggesting the creation of styles for even the

smallest attainable level. Further, ACSS also recommends using properties in the

naming convention of the selectors, which means while you might use .skin in OOCSS,

in ACSS you would use .color-skin for example. (Holden, 2021)

22

While all of the previous architectures focused on class names, SMACSS puts its aim

more on CSS folder/file organization. SMACSS promotes breaking the CSS down

based on five CSS rules: 1.Base, 2.Layout, 3.Module, 4.State, 5.Theme. The

categorization of styles based on these five rules helps identify patterns and further

outline better practices for each pattern, which as a result makes up less and easier to

maintain code and provides the user with a better and more consistent experience.

(Holden, 2021)

3.2 Which Architecture Should be Used?

Now, the question that remains is, what architecture should be chosen? The answer is

it really does not matter. It is recommended to simply choose the architecture one is

the most comfortable with, the one preferred and if working in a team, the one every

member agrees on in order to keep the format consistent. The most important aspect

of CSS architectures simply is to maintain a consistent style. Whichever architecture

is chosen, it is highly recommended to describing the architecture used in the

documentation of the project, so the guidelines can be more easily enforced and kept

up, and new team members can catch up quickly. (Holden, 2021)

23

4 Implementation of CSS in HTML

There are three ways of how CSS can be included in an HTML document, inline styles,

embedded styles, and external stylesheets.

4.1 Inline Styles

When using inline styles, the style rules are applied by directly adding the CSS rules

into the starting tag of an HTML element and are defined using the style attribute as

seen in Code 1.

 <h1 style="color:green; font-size:40px; font-style:sans-serif;">H1</h1>

Code 1

This way of implementing CSS in HTML is regarded as a bad practice, as the content

of the document and the presentation are being mixed which can cause issues with

maintaining the code. But it is sometimes used when defining a single unique style for

one specific element. (How to Include CSS in HTML Pages - Tutorial Republic, n.d.)

4.2 Embedded Styles

Embedded Styles, also referred to as internal styles solely affect the document, they

are inserted in. They are defined using the <style> element within the <head> section

of the HTML document as seen in Code 2. Since this embedding of styles makes it

impossible to share styles between documents, this method is not recommended

either. (How to Include CSS in HTML Pages - Tutorial Republic, n.d.)

<head>
 <style>
 body {
 background-color: magenta;
 }
 p {
 color: black;
 font-size: 20px;
 }
 </style>
</head>

Code 2

4.3 External Stylesheets

The option of using external stylesheets is usually of an advantage when making

changes to several pages, as it enables you to change the look of an entire website by

24

only changing one singular file. Additionally, it provides great reusability. The external

stylesheet is implemented into the HTML document in the <head> section by using the

<link> tag as done so in Code 3. The href attribute takes in the address of the file. (How

to Include CSS in HTML Pages - Tutorial Republic, n.d.)

<head>
 <link rel="stylesheet" href="app.css">
</head>

Code 3

Another option of implementing an external stylesheet is by importing it using the

@import statement. Code 4 shows how this can be done by including @import in the

<style> section of the header of an HTML document. After the @import statement, the

<style> element may include some other CSS rules, which shows the use of embedded

styles. (How to Include CSS in HTML Pages - Tutorial Republic, n.d.)

<head>
 <style>
 @import url("externalsheet.css");
 </style>
</head>

Code 4

4.4 How to Create an External Stylesheet Using

Chrome and Visual Studio Code

The first step is to download and install Chrome by following the instructions on the

Google Chrome Website. Next, download Visual Studio Code, also referred to as VS

Code and not to be confused with Microsoft’s Visual Studio, for the needed operating

system also following the instructions of their website.

After downloading and installing the tools, open up VS Code and choose the option

Open Folder on the starting page listed under Start and open the folder to work in. Next

create a new file and save it to the folder using any name adding the ending .html to

create an HTML document. The next step is to fill the document with some basic code

to create a very simple looking website. A helpful shortcut in VS Code in order to be

provided with an HTML skeleton is !+Tab. As a following step, some HTML elements

need to be added for the purpose of later styling them with CSS.

To create a CSS file, create another new file in VS Code preferably in the same folder,

giving it any name while adding .css to the end. Now, the file needs to be linked to the

25

HTML document using the <link> element in the head section of the document, see

Chapter 4.3.

The web page can then be viewed in the browser by opening up the HTML document

from the file explorer. The page will need to be refreshed after any changes have been

made and saved to the HTML document or stylesheet.

26

5 Nutshell Examples

The following examples will be done using an external stylesheet, the web browser

Chrome, and the code editor Visual Studio Code. While Chrome and VS Code are the

preferred tools for most web developers, any other browser and code editor will work

as well.

5.1 Simple Examples – Travel Bucket List

The following examples will be done using the very simple HTML document which

shows a list of travel destinations seen in the Appendix, Code 28, and will show how

to edit it using differently CSS styling properties. Due to the fact that these examples

are focused on the styling of the document, the submit button will not actually function,

as this would exceed the abilities of CSS. The finished and complete stylesheet can

be found in the appendix, Code 29.

5.1.1 How to Apply and Change the Colour of Text and

Background

This simple example shows how to apply colour to the <h1> and <button> element. In

the external stylesheet the <h1> element is selected, and the styling property color is

defined, which applies a colour to the element.

h1 {
 color: green;
}

Code 5

The value describing the colours in Code 5 is written in a human-readable style using

the colour names. The value could also be written using RGB/RGBA or hexadecimals.

The RGB Value uses the formula rgb(red, green, blue), with each parameter (red,

green, blue) defining the intensity of a colour between 0 and 255. For example, the

colour green could be display using rgb(0,255,0). The RGBA Value is an extension to

RGB with an alpha channel and uses the formula rgba(red, green, blue, alpha) with

the alpha parameter specifying the opacity of a colour with a number between 0.0 and

1.0. (Groves, n.d.)

27

Using hexadecimals values is the most common used technique in CSS to specify

colours. Hexadecimal values are preceded with a # symbol followed by six hex

numbers between 0-9 and a-f. As a reference: the colours white and black have the

syntax #000000 and #ffffff. (Groves, n.d.)

Therefore Code 5 could also look like Code 6.

h1 {
 color: rgba(72, 159, 181, 0.925);
}

Code 6

In the HTML document, Code 28 there are certain elements with the class must

applied to them. Those cities are the ones considered an absolute must to be visited.

In Code 7 they are therefore specifically selected using the class selector and coloured

differently using hexadecimals.

.must {
 color: #82c0cc;
}

Code 7

The overall colour of the whole HTML document can be changed by selecting the

<html> element and setting background-color to the desired colour as seen in Code 8.

html {
 background-color: #ede7e3;
}

Code 8

5.1.2 How to Style a Document Using Common Text

Properties

The next example shows how to style a HTML document using some of the most

commonly used text properties, starting with text-align. This property is used to set the

alignment of the inline-level content horizontally inside a block element. In Code 9 all

elements are selected using the universal selector * and centred using text-align and

the value center.

* {
 text-align: center;
}

Code 9

28

The bullet points of the list can be centred with the list, by selecting ul and setting the

display property to inline-block, or they can simply be removed completely by setting

the property list-style-type to none as seen in Code 10.

ul {
 list-style-type: none;
}

Code 10

The needed text property to set the weight or boldness of a text font is font-weight in

combination with a value using keywords such as bold or lighter or using numbers from

100 to 900 as used in Code 11 where the text in the <p> and elements is set to

become bolder. It is important to note that using font-weight also comes with the

limitation of the used font-family.

p {
 font-weight: 600;
}
ul {
 font-weight: bolder;
}

Code 11

Another text property often used is text-decoration, which controls the appearance of

decorative lines on text, this can include underlines, overlines or even a line going

through the text. The colour can be specified as well as the line style and the thickness.

The order of the values does not matter, they simply need to be separated with a white

space. This text property is most commonly used to remove default underlines such

as the ones that come with <a> elements by setting text-decoration to none. In Code

12 text-decoration was used to cross off those cities already visited, which the class

done has been applied to.

.done {
 text-decoration: line-through black;
}

Code 12

When setting the height of a line box, the property line-height is used to specify the

distance between lines. Used on block-level elements, it sets the minimum height of

line boxes, while it sets the height used to calculate the line box height for non-replaced

inline elements. None-replaced inline elements are those whose content is displayed

and not replaced with something else, for example the content within a <p> element

will be displayed while the content within an element will be replaced with the

29

actual image. The height is specified using either a number, a length, a percentage, or

a keyword such as normal. In general, it is more common to use unitless numbers. In

Code 13 the number 2.5 is used to set the height of lines of the unordered list elements

to make them appear further apart.

ul {
 line-height: 2.5;
}

Code 13

The horizontal space between letters can be set using the text property letter-spacing.

Using positive values, the characters will spread apart, while using negative values will

bring them closer together. In Code 14 this is done by spacing out the letters of the

<h1> element by 5 pixels.

h1 {
 letter-spacing: 5px;
}

Code 14

To change the overall font size, the property font-size with a value is needed, which

can either be a keyword such a smaller or x-large, a length or a percentage, which are

relative to the font size of the element. The difference to the font-weight property is that

it does not increase the thickness of characters, only the size. In Code 15 this can be

seen as the font size of the content within the <p> and elements is increased

while the font weight has been made bolder, see Code 11. The font size of the

and <h1> elements has also been increased to match it to the text in <p>.

p {
 font-weight: 600;
 font-size: 150%;
}

ul {
 font-weight: bolder;
 font-size: 120%;
}

h1 {
 font-size: 300%;
}

Code 15

5.1.3 How to Change the Font Style

Changing the font style hugely depends on the fonts built into the browser being used,

which is why it is recommended to rely on common browser or website fonts as those

30

are the ones most users will have in their browser. The property used to change the

font is font-family with the font style as the value. In Code 16 the font of the overall

document is changed to be Courier New in combination with a font stack which lists

the fonts in the order of how they should be applied if the first one is not available. In

other words, the font stack acts as a backup.

* {
 font-family: 'Courier New', Courier, monospace;
}

Code 16

5.1.4 How to Use Box Model Properties

The <form> element and those nested in the element at the bottom of the HTML

document, Code 28, can be styled using properties first introduced in Chapter 2.4. To

start out, the box-sizing property should be set to border-box for the whole document.

This will result in the browser regarding any padding and border added, effectively

decreasing the elements width by the value specified for padding and border.

* {
 box-sizing: border-box;
}

Code 17

The Code 18 shows how the <input> elements can now be styled using an attribute

selector to select them. The properties width and height are used to increase the size

of the input boxes. The margin is set to 5 pixels to increase the distance between the

elements just a little. padding is not necessarily needed for this example. The

shorthand border property is used to set the width of the border, the colour and also

the style, while setting the outline property to none to stop the border from changing

when the input box is selected. Further, the border-radius property is set to round off

the boxes by 10 pixels.

input[type="text"] {
 font-size: 120%;
 width: 300px;
 height: 50px;
 margin: 5px;
 border: 2px solid #16697a;
 outline: none;
 border-radius: 10px;
}

input[type="submit"] {
 font-size: 120%;
 font-weight: bolder;

31

 width: 120px;
 height: 50px;
 margin: 5px;
 border: 2px solid #16697a;
 background-color: #16697a;
 border-radius: 10px;
}

Code 18

5.1.5 How to Put a Shadow on an Element

In Code 19 the boxes created by the <input> elements are given a slight shadow using

the box-shadow property. The value defined for the property includes four numbers

followed by a colour. The first number sets the horizontal offset, a positive number will

create a shadow on the right side of the box, while a negative one will put it on the left

side. The second number sets the vertical offset, here a positive number puts the

shadow below a box and a negative one above it.

The blur radius is set by the third number and determines how blurry a shadow will be.

Setting the number to 0 will result in a very sharp shadow, while a higher number will

result in a more blurred shadow. The higher the number, the more the shadow will also

extend, meaning if the horizontal offset is 10px and the blur radius is set to 10px the

total of the shadow will be 20px.

The last number, the spread radius is in comparison to the other three optional. The

size of the shadow will increase when using positive numbers, while using negative

ones reduces it.

For shadows it is most common to use a more transparent colour by setting the opacity

to for example 0.4 or less. Using the keyword inset as a value before specifying the

four numbers will create an inner shadow.

input[type="text"] {
 box-shadow: 0 0 10px 3px rgba(0, 0, 0, 0.35);
}

input[type="submit"] {
 box-shadow: 0 0 10px 3px rgba(0, 0, 0, 0.35);
}

Code 19

5.1.6 How to Create a Hover Effect

The Code 20 demonstrates how to create a hover effect on the submit button. First,

the element needs to be selected using an ID selector followed by the pseudo-class

32

:hover, which creates the hover effect. Then the element can be styled by setting a

background-color which the button will change to when hovered over. Further, the

cursor will change to a hand pointer when hovering over by setting the cursor property

to pointer.

#add:hover {
 background-color: #82c0cc;
 cursor: pointer;
}

Code 20

5.1.7 How to Position Elements

In Code 21 the <form> element is positioned by using the position property, see

Chapter 2.5.5 with the value sticky making it stick to the bottom of the page where it

will stay and therefore overlap with the other elements when scrolling up the page.

form {
 position: sticky;
 bottom: 10px;
}

Code 21

5.2 More Complex Examples – Advent Calendar

The next examples will use the following HTML document and styles as seen in the

Appendix, Code 30, and Code 31, and will show how to create an advent calendar

with six boxes in each row, which change when hovered over and how to make it

responsive to different screen sizes. The finished and complete stylesheet can be

found in the Appendix, Code 32.

5.2.1 How to Create a Layout Using Flexbox

The HTML document, Code 30 has four containers which are selected and set to flex

in Code 22, further some sizing properties are applied to the containers.

The direction of the main axis is specified using the property flex-direction which can

be set to either column or row, as done so in Code 22. Items can also be laid out using

reverse directions values column-reverse or row-reverse.

When a fixed height and width are set for the boxes the flex items might overflow their

container, eventually destroying the layout. To keep them from overflowing, the

33

property flex-wrap can be set to wrap, which will cause any overflowing items to move

to the next line.

Flexbox also offers properties used to align items along the main and cross axis. justify-

content specifies how the content or items are distributed across the main axis and

can be used with the values such as flex-start the default, center, or space-evenly

which spaces out the items evenly according to the available space. To distribute the

space between items along the cross axis the property align-items is used with values

such as stretch the default, flex-end or center which centres the items on the cross

axis. If the behaviour of one specific item in a container should be changed, the

property align-self can be used with the same values as align-items.

#container1,
#container2 {
 display: flex;
 width: 90%;
 height: 100%;
 margin: 3% auto; /*margin: top and bottom = 3%, automatically calculate left and right = auto*/
 flex-direction: row;
 justify-content: space-evenly;
 align-items: center;
}

Code 22

To center the content within the flex items, flexbox properties are applied to the <div>

elements in Code 23.

section div {
 justify-content: center;
 align-items: center;
}

Code 23

5.2.2 How to Create a Transition

The shorthand CSS transition property is used to change the state of an element by

specifying the transition for it. States can be defined using pseudo-classes. The

property takes in up to four values, with the first being the property to which the

transition should be applied to, for example the background-color or also all. The next

value specifies the duration of the transition defined by a number of seconds. Next, the

timing function can be defined using values such as ease-in or steps(4, end) which will

display the function in four steps ending the animation with the last one. Lastly, the

value for the delay can be added, causing a delay defined by a number of seconds to

the transition effect. (Transition - CSS: Cascading Style Sheets | MDN, 2022)

34

In Code 24 the transition is applied to all properties of the <div> elements and to the

opacity property of the elements with an effect duration of three and four

seconds.

section div {
 transition: all 3s;
}

img {
 transition: opacity 4s;
}

Code 24

Code 25 sets the other state of the <div> and elements using the pseudo-class

:hover. Now, when hovering over the <div> elements the images will appear.

section div:hover {
 color: transparent;
 box-shadow: none;
 background-color: #ffffff;
}

img:hover {
 opacity: 1;
}

Code 25

5.2.3 How to Rotate an Element

This example shows how the CSS property transform can add a rotation to an element.

The transform property gives one the ability to rotate, skew, scale, or translate a

transformable element which include all those whose layout is controlled by the box

model with some small exceptions. In Code 26 transform was used with the function

rotate() which causes the <div> elements to rotate by 360 degrees when hovered on.

section div:hover {
 transform: rotate(360deg);
}

Code 26

5.2.4 How Make the Design Responsive Using Media

Queries

In Code 27 specific media features are targeted by using media queries to create a

responsive design. Media queries were introduced in CSS3 and can be applied using

the at-rule @media followed by only screen which will prevent older browsers, not

supporting media queries with media features, from applying the specified styles, and

35

lastly one or more conditions which must be true in order for certain styles to be

included. The defined minimum and maximum widths in Code 27 are commonly used

breakpoints for widths of devices and make up the condition needed to be true in order

for the sizes of the elements to change. The Code 27 will therefore result in a much

more responsive webpage with <div>, <h1> and elements changing their sizes

accordingly.

@media only screen and (max-width: 480px) {
 section div {
 width: 60px;
 height: 60px;
 font-size: 2em;
 margin-left: 2px;
 margin-right: 2px;
 }
 h1 {
 font-size: 3em;
 }
 img {
 width: 0.5em;
 height: 1em;
 }
}

@media only screen and (min-width:481px) and (max-width: 768px) {
 section div {
 width: 100px;
 height: 100px;
 font-size: 2em;
 margin-left: 2px;
 margin-right: 2px;
 }
 h1 {
 font-size: 4em;
 }
 img {
 width: 1em;
 height: 1.5em;
 }
}

@media only screen and (min-width:769px) and (max-width: 1024px) {
 section div {
 width: 170px;
 height: 170px;
 font-size: 3em;
 margin-left: 2px;
 margin-right: 2px;
 }
 img {
 width: 1.5em;
 height: 2em;
 }
}

Code 27

36

6 Conclusion and Outlook

Hakon Wium Lie’s goal in 1994 was it to create a stylesheet language to give people

the possibility of styling documents, such as HTML documents and in 1996 the first

version of CSS was released. The World Wide Web Consortium has since take on the

job of updating and developing new features, which make web design more responsive

and accessible to all.

CSS generally follows a syntax of a property:value pair preceded by one or more

selectors, except for at-rules which are often used for importing other external

stylesheets or sizing pages according to certain media features. CSS offers absolute

and relative units, although relative units are preferred when creating responsive

designs.

Before starting any project, the rules of the architecture used should be set, to ensure

a consistent style of the CSS code. Every architecture aims at making work more

efficient, while keeping the style consistent and the code reusable in their own slightly

different way.

The nutshell examples have shown an easy way of creating simple responsive web

design which could be further extended using a scripting language such as JavaScript

to make the design dynamic and program the behaviour of the web page. Further

frameworks such as Bootstrap could be used to build web pages, making the web

development process much faster and pleasant while giving the developer the

opportunity of implementing advanced CSS features. Using frameworks can also

increase the compatibility with several browsers and the different versions of them.

Over the past few years, accessibility and especially accessible web design have

gained great attention. The framework automatic.css was developed to cater to the

needs of impaired users enabling developers to create accessible website by providing

them with new CSS features. Automatic.css and ARIA are already paving the way to

an overall accessible web design, now the question that arises is: how will other

features of CSS be adopted or developed to fit to the needs of special users?

37

References

A brief history of CSS until 2016. (n.d.). Retrieved October 26, 2022, from

https://www.w3.org/Style/CSS20/history.html

ARIA - Accessibility | MDN. (2022, October 3). Retrieved November 23, 2022, from

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA

CSS History. (n.d.). Retrieved October 26, 2022, from https://simplecss.eu/css-history-

brief-overview.html

CSS layout - Learn web development | MDN. (2022, September 9). Retrieved

December 7, 2022, from https://developer.mozilla.org/en-

US/docs/Learn/CSS/CSS_layout

CSS selectors - CSS: Cascading Style Sheets | MDN. (2022, November 5). Retrieved

November 24, 2022, from https://developer.mozilla.org/en-

US/docs/Web/CSS/CSS_Selectors?retiredLocale=de

Flexbox - Learn web development | MDN. (2022, November 23). Retrieved December

9, 2022, from https://developer.mozilla.org/en-

US/docs/Learn/CSS/CSS_layout/Flexbox

Geary, K. (2022a, February 28). Why Automatic.css is Different From Other

Frameworks. Automatic.css. Retrieved November 23, 2022, from

https://automaticcss.com/why-automatic-css-different/

Geary, K. (2022b, August 7). How Automatic.css Makes Websites More Accessible |

ACSS. Automatic.css. Retrieved November 23, 2022, from

https://automaticcss.com/accessibility-features/

GeeksforGeeks. (2022, June 8). CSS Syntax and Selectors. Retrieved November 8,

2022, from https://www.geeksforgeeks.org/css-syntax-and-selectors/

Groves, D. (n.d.). Defining Colors in CSS. Retrieved November 24, 2022, from

http://web.simmons.edu/%7Egrovesd/comm244/notes/week3/css-colors

38

Holden, I. (2021, February 2). CSS Architecture Style Guides For Frontend

Developers. HackerNoon. Retrieved October 17, 2022, from

https://hackernoon.com/css-architecture-style-guides-for-frontend-developers-

lj28332a

How CSS works - Learn web development | MDN. (2022, September 13). Retrieved

October 23, 2022, from https://developer.mozilla.org/en-

US/docs/Learn/CSS/First_steps/How_CSS_works

How to Include CSS in HTML Pages - Tutorial Republic. (n.d.). Retrieved November

23, 2022, from https://www.tutorialrepublic.com/css-tutorial/css-get-started.php

Introduction to the CSS basic box model - CSS: Cascading Style Sheets | MDN. (2022,

November 30). Retrieved November 22, 2022, from https://developer.mozilla.org/en-

US/docs/Web/CSS/CSS_Box_Model/Introduction_to_the_CSS_box_model

Kumar, S. (2022, May 13). History of CSS. The Crazy Programmer. Retrieved

November 26, 2022, from https://www.thecrazyprogrammer.com/2021/11/history-of-

css.html

Mitchell, J. (2020, September 3). CSS Units Explained. DigitalOcean Community.

Retrieved November 22, 2027, from

https://www.digitalocean.com/community/tutorials/css-css-units-explained

Petrovic, B. (2022, September 14). Widely Used CSS Architectures and How They

Function. CQL. Retrieved November 22, 2022, from

https://www.cqlcorp.com/insights/widely-used-css-architectures-and-how-they-

function/

position - CSS: Cascading Style Sheets | MDN. (2022, November 29). Retrieved

December 9, 2022, from https://developer.mozilla.org/en-

US/docs/Web/CSS/position?retiredLocale=de

Pseudo-classes and pseudo-elements - Learn web development | MDN. (2022,

November 30). Retrieved November 22, 2022, from https://developer.mozilla.org/en-

US/docs/Learn/CSS/Building_blocks/Selectors/Pseudo-classes_and_pseudo-

elements

39

Specificity - CSS: Cascading Style Sheets | MDN. (2022, October 30). Retrieved

November 23, 2022, from https://developer.mozilla.org/en-

US/docs/Web/CSS/Specificity

Syntax - CSS: Cascading Style Sheets | MDN. (2022, September 28). Retrieved

October 17, 2022, from https://developer.mozilla.org/en-US/docs/Web/CSS/Syntax

transition - CSS: Cascading Style Sheets | MDN. (2022, September 28). Retrieved

December 9, 2022, from https://developer.mozilla.org/en-

US/docs/Web/CSS/transition?retiredLocale=de

Using CSS custom properties (variables) - CSS: Cascading Style Sheets | MDN.

(2022, September 28). Retrieved December 14, 2022, from

https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties

What is CSS? - Learn web development | MDN. (2022, September 13). Retrieved

October 17, 2022, from https://developer.mozilla.org/en-

US/docs/Learn/CSS/First_steps/What_is_CSS

40

Appendix

Code 28 defines the HTML document used for the Nutshell Examples of Chapter 5.1.

It represents a list of cities when viewed in the browser.

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Travel Bucket List</title>
 <link rel="stylesheet" href="travel_list.css">
</head>

<body>

 <h1>My Travel Bucket List</h1>
 <div>
 <p> These are some cities I would love to visit one day!</p>
 </div>
 <hr>

 Barcelona, Spain
 <li class="must done">London, UK
 Tokyo, Japan
 <li class="must">Honolulu, Hawaii
 Helsinki, Finland
 <li class="done">Paris, France
 <li class="must done">New York City, USA
 Toronto, Canada
 <li class="must">Edinburgh, Scotland
 <li class="must">Auckland, New Zealand
 <li class="done">Rome, Italy
 Seoul, South Korea
 Oslo, Norway
 <li class="done">Galway, Ireland
 <li class="must">Amsterdam, Netherlands

 <form>
 <input type="text" name="city" id="name" placeholder="City, Country">
 <input type="submit" value="Add City" id="add">
 </form>

</body>

</html>

Code 28 - HTML Document for chapter 5.1

Code 29 defines the finished stylesheet for Chapter 5.1 and contains all the styles

applied to the HTML document, Code 28.

html {
 background-color: #ede7e3;
}

41

* {
 box-sizing: border-box;
 text-align: center;
 font-family: 'Courier New', Courier, monospace;
}

ul {
 list-style-type: none;
 font-weight: bolder;
 line-height: 2.5;
 font-size: 180%;
}

h1 {
 color: rgba(72, 159, 181, 0.925);
 letter-spacing: 5px;
 font-size: 370%;
}

p {
 font-weight: 600;
 font-size: 180%;
}

.done {
 text-decoration: line-through black;
}

.must {
 color: #82c0cc;
}

/* styling the <input> elements in the <form> element */
input[type="text"] {
 font-size: 120%;
 width: 300px;
 height: 50px;
 margin: 5px;
 border: 2px solid #16697a;
 outline: none;
 border-radius: 10px;
 box-shadow: 0 0 10px 3px rgba(0, 0, 0, 0.35);
}

input[type="submit"] {
 font-size: 120%;
 font-weight: bolder;
 width: 120px;
 height: 50px;
 margin: 5px;
 border: 2px solid #16697a;
 background-color: #16697a;
 border-radius: 10px;
 box-shadow: 0 0 10px 3px rgba(0, 0, 0, 0.35);
}

/* adding the hover effect */
#add:hover {
 background-color: #82c0cc;
 cursor: pointer;
}

42

/* positioing the <form> element */
form {
 position: sticky;
 bottom: 10px;
}

Code 29 - The finished style sheet for chapter 5.1

Code 30 defines the HTML document used for the Nutshell Examples of Chapter 5.2.

It represents the skeleton of an advent calendar when viewed in the browser.

<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <link rel="stylesheet" href="advent_calendar_app.css">
 <title>Advent Calendar</title>
</head>

<body>
 <h1>Advent Calendar</h1>
 <section id="container1">
 <div>
 <h4 class="day">1</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/dog-wearing-santa-hat.png"
 alt="A Dog Wearing a Santa Hat">
 </div>
 <div>
 <h4 class="day">2</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/popcorn-christmas-tree.png"
 alt="Christmas Tree with Popcorn">
 </div>
 <div>
 <h4 class="day">3</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/elf-hat-red-green.png"
 alt="Red and Green Elf Hat">
 </div>
 <div>
 <h4 class="day">4</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/christmas-owl.png"
 alt="Owl Wearing a Santa Hat">
 </div>
 <div>
 <h4 class="day">5</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/christmas-gift-with-big-
bow.png"
 alt="Christmas Gift with Big Bow">
 </div>
 <div>
 <h4 class="day">6</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/boy-santa-christmas-list.png"
 alt="Boy Holding a Christmas Wish List">
 </div>
 </section>
 <section id="container2">
 <div>
 <h4 class="day">7</h4>

43

 <img src="https://content.mycutegraphics.com/graphics/christmas/cute-reindeer-head.png"
alt="Reindeer">
 </div>
 <div>
 <h4 class="day">8</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/gingerbread-man.png"
alt="Gingerbread Man">
 </div>
 <div>
 <h4 class="day">9</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/snowman-in-santa-hat.png"
 alt="Snowman Wearing a Santa Hat">
 </div>
 <div>
 <h4 class="day">10</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/polar-bear-christmas-tree-in-
snow.png"
 alt="Polar Bear Next to Christmas Tree in the Snow">
 </div>
 <div>
 <h4 class="day">11</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/christmas-brown-bear-
drinking-cocoa.png"
 alt="Bear Wearing Santa Hat and Drinking Cocoa">
 </div>
 <div>
 <h4 class="day">12</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/christmas-gift-blue.png"
 alt="Blue Christmas Gift">
 </div>
 </section>
 <section id="container3">
 <div>
 <h4 class="day">13</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/christmas-penguins-and-
christmas-tree.png"
 alt="Penguins Next to Christmas Tree">
 </div>
 <div>
 <h4 class="day">14</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/reindeer-in-snow.png"
 alt="Reindeer in the Snow">
 </div>
 <div>
 <h4 class="day">15</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/elf-hat-green.png" alt="Green
Elf Hat">
 </div>
 <div>
 <h4 class="day">16</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/penguin-eating-christmas-
cookies.png"
 alt="Penguin Eating Christmas Cookies">
 </div>
 <div>
 <h4 class="day">17</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/christmas-tree-with-gifts.png"
 alt="Christmas Tree with Presents Underneath">
 </div>
 <div>
 <h4 class="day">18</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/christmas-bear-with-gift.png"

44

 alt="Bear Holding Christmas Gifts">
 </div>
 </section>
 <section id="container4">
 <div>
 <h4 class="day">19</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/elves-with-reindeer.png"
 alt="Elves With Reindeer">
 </div>
 <div>
 <h4 class="day">20</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/dog-with-christmas-gift-and-
candy-cane.png"
 alt="Dog with Christmas Gift and Candy Cane">
 </div>
 <div>
 <h4 class="day">21</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/christmas-gift-pink.png"
 alt="Pink Christmas Gift">
 </div>
 <div>
 <h4 class="day">22</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/festive-christmas-tree.png"
 alt="Festive Christmas Tree">
 </div>
 <div>
 <h4 class="day">23</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/christmas-cat-with-candy-
cane.png"
 alt="Cat Wearing Santa Hat and holding Candy Cane">
 </div>
 <div>
 <h4 class="day">24</h4>
 <img src="https://content.mycutegraphics.com/graphics/christmas/santa-claus.png" alt="Santa
Claus">
 </div>
 </section>
</body>

</html>

Code 30 - The HTML Document for chapter 5.2

Code 31 defines the styles applied to the HTML document, Code 30. These styles

where not specifically explained in Chapter 5.2 as similar styles have been applied in

Chapter 5.1. For explanations of the styles in Code 31, refer to Chapter 5.1.

* {
 box-sizing: border-box;
 margin: 0;
 padding: 0;
}

html {
 background: url(https://media.istockphoto.com/id/1176728520/vector/winter-christmas-seamless-
pattern-background-vector-
illustration.jpg?s=612x612&w=0&k=20&c=Txhf7q_IKxRW8C0rtpsG8Um07V-Sge0umxocdLCwZ_8=);
}

h1 {

45

 font-size: 6em;
 font-family: "Copperplate Gothic Light", fantasy;
 text-align: center;
 color: #bc4749;
 margin-top: 2%;
}

img {
 width: 2.5em;
 height: 3em;
 opacity: 0; /*0 -> image is fully opaque*/
}

.day {
 position: absolute;
}

section div {
 width: 200px;
 height: 200px;
 background-color: #23856d;
 border: 3px solid #006f57;
 box-shadow: inset -0.3em -0.3em 0.6em rgba(0, 0, 0, 0.4), inset 0.3em 0.3em 0.6em rgba(0, 0, 0,
0.4);
 color: white;
 margin-left: 3px;
 margin-right: 3px;
 border-radius: 5%;
 margin-top: 2%;
 font-size: 4em;
}

Code 31 - CSS for chapter 5.2

Code 32 defines the finished stylesheet for Chapter 5.2 and contains all the styles

applied to the HTML document Code 30. When displayed in the browser, the finished

advent calendar with all styles applied to it can be seen. Due to the media queries, the

calendar will scale according to the screen size.

* {
 box-sizing: border-box;
 margin: 0;
 padding: 0;
}

html {
 background: url(https://media.istockphoto.com/id/1176728520/vector/winter-christmas-seamless-
pattern-background-vector-
illustration.jpg?s=612x612&w=0&k=20&c=Txhf7q_IKxRW8C0rtpsG8Um07V-Sge0umxocdLCwZ_8=);
}

h1 {
 font-size: 6em;
 font-family: "Copperplate Gothic Light", fantasy;
 text-align: center;
 color: #bc4749;
 margin-top: 2%;
}

46

img {
 width: 2.5em;
 height: 3em;
 opacity: 0;
 /*0 -> img is fully opaque*/
 transition: opacity 4s;
}

/* positioning the numbers of each calendar door */
.day {
 position: absolute;
}

/* creating the layout and overall style of the calendar */
#container1,
#container2,
#container3,
#container4 {
 display: flex;
 width: 90%;
 height: 100%;
 margin: 3% auto;
 flex-direction: row;
 justify-content: space-evenly;
 align-items: center;
}

section div {
 width: 200px;
 height: 200px;
 display: flex;
 background-color: #23856d;
 border: 3px solid #006f57;
 box-shadow: inset -0.3em -0.3em 0.6em rgba(0, 0, 0, 0.4), inset 0.3em 0.3em 0.6em rgba(0, 0, 0,
0.4);
 color: white;
 margin-left: 3px;
 margin-right: 3px;
 border-radius: 5%;
 margin-top: 2%;
 font-size: 4em;
 justify-content: center;
 align-items: center;
 transition: all 3s;
}

/* creating the hover effect */
section div:hover {
 color: transparent;
 box-shadow: none;
 background-color: #ffffff;
 transform: rotate(360deg);
}

img:hover {
 opacity: 1;
}

/* media queries */
@media only screen and (max-width: 480px) {

 section div {

47

 width: 60px;
 height: 60px;
 font-size: 2em;
 margin-left: 2px;
 margin-right: 2px;
 }

 h1 {
 font-size: 3em;
 }

 img {
 width: 0.5em;
 height: 1em;
 }
}

@media only screen and (min-width:481px) and (max-width: 768px) {

 section div {
 width: 100px;
 height: 100px;
 font-size: 2em;
 margin-left: 2px;
 margin-right: 2px;
 }

 h1 {
 font-size: 4em;
 }

 img {
 width: 1em;
 height: 1.5em;
 }
}

@media only screen and (min-width:769px) and (max-width: 1024px) {

 section div {
 width: 170px;
 height: 170px;
 font-size: 3em;
 margin-left: 2px;
 margin-right: 2px;
 }

 img {
 width: 1.5em;
 height: 2em;
 }
}

Code 32 - The finished style sheet for chapter 5.2

