
BIS Seminar Paper

Java 8 to Java 17: Overview, Changes,
Outlook, Suggestions
Lukas Artwohl
Date of Birth: 24.07.2000
Student ID: 11844808

Subject Area: Information Business

Studienkennzahl: 033 561

Supervisor: Prof. Dr. Rony G. Flatscher

Date of Submission: 01.06.2022

Institute for Information Systems and Society, Vienna University of Eco-
nomics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

2

Contents
1 Introduction 6

1.1 Research Question . 6
1.2 Research Method . 6
1.3 Structure of Thesis . 6

2 Overview of the Java SE 8
2.1 Key Features . 9

2.1.1 Object-Orientation . 9
2.1.2 Platform independence trough Interpreters 9
2.1.3 Memory management 9
2.1.4 Simplicity and Dynamism 10

2.2 Key Use Cases . 10
2.2.1 Applications . 10
2.2.2 Big Data . 11
2.2.3 Embedded Systems . 11

3 Java 8 12
3.1 Features in Java 8 . 12

3.1.1 Already existent Features 12
3.1.2 New Features . 12

4 Changes up to Java 17 16
4.1 New Features . 16

4.1.1 Java 9 . 16
4.1.2 Java 10 . 16
4.1.3 Java 11 (LTS) . 17
4.1.4 Java 12 . 18
4.1.5 Java 13 . 18
4.1.6 Java 14 . 19
4.1.7 Java 15 . 20
4.1.8 Java 16 . 21
4.1.9 Java 17 (LTS) . 21

4.2 Removed or Deprecated Features 22
4.2.1 Java 10 . 23
4.2.2 Java 11 (LTS) . 23
4.2.3 Java 12 . 23
4.2.4 Java 13 . 23
4.2.5 Java 14 . 24
4.2.6 Java 15 . 24

3

4.2.7 Java 16 . 24
4.2.8 Java 17 (LTS) . 25

5 Key Differences Between Java 8 and 17 26
5.1 Features . 27
5.2 Security . 28

6 Outlook up to Java 21 (LTS) 30
6.1 Java 18 . 30
6.2 Outlook . 31
6.3 Suggestions . 32

6.3.1 Mobile Development 32
6.3.2 Possible Upcoming Use Cases 33

7 Conclusion and further Research 35

References 37

4

Abstract

The importance of Java in computer science undisputed. Changes
that happened within the programming language do get overlooked
often times though. This paper will analyze how the language has
changed, especially between version 8 and 17 while also giving a gen-
eral overview of the language and how the language will evolve in the
future. The Java Module System, the introduction of licensing costs
as well as significant performance and security improvements are only
a couple of those changes that show how much Java 8 differs from
Java 17. Documenting these changes as well as pointing out the differ-
ences between the versions could be a good assistance for programmers
trying to figure out which version to use.

5

1 Introduction
This seminar paper discusses the evolution of the Java programming lan-
guage, and in particular how the language changed from Java version 8 to
Java version 17. In addition to that the paper evaluates how the program-
ming language could evolve in the future. This means that we will first get
an overview of the programming language and its use cases in general and
subsequently we will be comparing Java 8 and Java 17 as well as how the
changes over the versions inbetween influenced the programming language.

1.1 Research Question

The research questions addressed in this paper are "How has the Java pro-
gramming language changed between the version 8 and the version 17?" and
"How will Java continue to grow and evolve in the future?". Because of these
research question the main emphasis in this paper lies on the new features
and functions that got added with different versions of Java and how these
have influenced users decisions to use a certain version of Java. Additionally
the paper also focuses on differentiating version 8 and version 17 in particu-
lar as well as what could be added to the programming language in the near
future.

To get a coherent overview of the topic of Java there will also be sub-
sequent research questions such as "What are the main points that define
the Java programming language and what are its main use cases?", "Which
features were added to the programming language over the years?" as well
as "What are the main reasons of users to use a certain version of Java?".
All of these questions are obviously needed to round up the topic of Java 8
to Java 17 and make everything more clear.

1.2 Research Method

This paper is based on existing literature about Java as well its official doc-
umentation and particularly the release notes of the different versions. The
release notes are the main sources used to analyze the different versions and
what make them stand out. Literature used in this paper contains both
books as well as websites (and even blogs).

1.3 Structure of Thesis

This paper starts of by introducing the general aspects of the Java program-
ming language (nevermind the versions). This means that we will first look

6

at features that make the programming language widely used and popular
and subsequently we will analyze the main fields in which Java is used.

Thereafter we will be having a deeper look into version 8 of the program-
ming language, one of the most popular, if not the most popular version to
date. We will be looking at which features already existed as well as which
new features added with Java 8 make the version so special.

The next section is concerned with analyzing the changes made to the
language from version 9 up to version 17. Here we will be looking at each
versions new as well as removed or deprecated features.

After having established those differences we will start to really analyze
the main differences between Java 8 and Java 17 and why users are using
one of those 2 versions.

Having completed the past of the programming language we will move
over to the future of it. In particular we will be looking at upcoming features
of new versions as well as suggestions on how the use cases of the program-
ming language could be further expanded.

Finally we will conclude the paper and also give an outlook on what
further research could be done for this topic.

7

2 Overview of the Java SE
In this chapter we will at first be looking at some details around the pro-
gramming language and, subsequently, at the key features of the Java SE as
well as its key use cases. As the Java SE is a programming language that
has existed since 1995, it has by now grown to being used in many different
fields. Hence why we will only go over the most significant use cases and
features.

”Java is a high-level, class based, object-oriented programming language
that is designed to have as few implementation dependencies as possible.“[3]
This means that the programming language contains natural language parts
and is, in general, more understandable to humans and also has a much
higher grade of abstraction. This grade of abstraction is also the reason why
low-level languages do mostly run more efficient, as they are primarily de-
signed to optimize the workflow of computers.[2]

The project of creating Java initially started in 1991 with the first public
implementation happening in 1996. This was Java version 1.0 and it was back
then called JDK 1.0. In the following years JDK 1.1 got released. Thereafter
the following versions were renamed to J2SE 1.2, J2SE 1.3 and J2SE 1.4,
which was released in 2002. In 2005 there was a jump to release J2SE 5.0.
After this version it got once again renamed to Java SE, which is the current
name of the programming language versions. The releases of the versions
Java SE 6 to Java SE 9 were irregular. From Java SE 10, which got released
in the September after the release of Java SE 9, on the releases of the Java
SE versions happen biyearly in March and September. The Java SE versions
which receive Long-Term Support are also chosen irregularly with Java SE 8,
Java SE 11, Java SE 17 and Java SE 21 (which will be released in September
2023). The amount of time passing between the versions is 4 years between
versions 8 and 11, 3 years between versions 11 and (most probably) 2 years
between versions 17 and 21. It has now been fixed that long-time support
versions are to be released every second year.[3]

With the first versions, which started with 1 all having relatively few new
features and improvements between them, the versions from Java 5 onward
all had much broader updates in comparison with the predecessor. This is
also when the expansion of the programming language really started. Java
5 was also initially named Java 1.5 but later renamed to Java 5 because of
these big updates as well as the much higher maturity.[36]

8

2.1 Key Features

We will now move on to some features and characteristics that are reasons
for Java to be used in almost every sector of computer science.

2.1.1 Object-Orientation

First of all, as already mentioned earlier, Java is based on object-oriented
programming (OOP). This means that everything that is implemented in
Java is treated as an object. This means that both variables and methods
are treated as objects. This means that all objects communicate in the same
way and are also treated the same way. A method is for instance as much of
an object as a class. Exceptions from being objects are primitive data types,
because this increases the performance.[26]
Two other key principles of OOP are encapsulation, which allows access
control. This means that we are able to only show what we want to who
we want. The second principle is abstraction, which means that the program
hides unnecessary information from the user and only shows what is really
relevant. Other key features of OOP are Inheritance and Polymorphism.[26]

2.1.2 Platform independence trough Interpreters

Java instantly executes the high-level programming code without the need of
compiling it into machine instructions. While using interpreters is typically
slower than using compilers, compilers make up the need to convert the code
into instructions that only fit the used architecture of the processor. This
means that such compiler languages are less portable as they are "bound" to
a processor architecture.[35]

What makes Java special in this case is, that it uses both the fast com-
pilers as well as the flexible interpreters. This is accomplished by using byte-
code, which is the intermediate stage between the high-level programming
language and machine instructions.[3]

2.1.3 Memory management

Java has multiple ways of managing memory. The first, and most well-
known one is the so-called garbage collector. Garbage collectors work in a
way that they collect and thereafter get rid of objects which can no longer
be addressed, because they are not linked to other objects anymore. This
means that garbage collectors work throughout the runtime of a program.[3]
In addition to that Java also uses exception handling during runtime. When
such an exception is thrown, it is immediately discarded, which means that

9

it will not be passed to the system but rather it terminates the execution.
This is also very useful as it can avoid damaging programs or systems.[14]

2.1.4 Simplicity and Dynamism

The syntax of Java is based on C++, but is designed much easier in a way
that it is more tidy. This means that parts that were needed in C++ were
removed in Java. Examples for that are a pointer syntax or header files.[14]
Java is also designed dynamically in a way that developers of libraries and
the language itself can always add functions to the respective packages or the
language itself without users needing to adapt running programs.[14]

2.2 Key Use Cases

With Java being such a versatile programming language there is also a
plethora of use cases of the language. We will now go over the most renowned
ones.

2.2.1 Applications

Java is generally used for most types of applications. These include web- and
mobile applications, Enterprise applications and also desktop GUI (graphical
user interface) applications.[7]

In web applications Java can be used with servlets to create easy to use
applications. The most prominent user of Java when it comes to web devel-
opment is Amazon.[7]

The most notable use case of Java in mobile applications and general
development for mobile devices is the operating system Android. Android
is based on Java and thus deeply tied with the language. Additionally the
feature of platform independence comes into play here as there are many
different systems and hardware used in mobile devices. Apps such as Uber,
Google or Netflix use Java software.[7]

Another very important use case is with enterprise applications. As Java
is such an extensive and fast programming language it is very often used to
build ERP (enterprise resource planning) software. Such programs need to
process a huge amount of data as well as handle many processes at the same
time. [7]

10

Lastly the GUI applications use Java because of JavaFX. JavaFX is a
platform for building such applications and is supported on Windows, Linux
as well as MacOS and different web browsers.[37]

What is also important to note here is that applications used for pro-
gramming, such as IntelliJ Idea, Eclipse and other big IDE’s, are also based
on Java.[7]

2.2.2 Big Data

The prevalent topic of Big Data also uses the Java programming language.
The most notable use case here is for Apache Hadoop, which is a framework
used in Big Data, which is completely written in Java. Furthermore Java is
used in Apache HBase or ElasticSearch. The efficient memory management
give Java the edge over other programming languages.[7]

2.2.3 Embedded Systems

A use case of which not many would think of as relevant in the first place are
embedded systems. This is actually a fundamental part of current technology.
The most important system here are sim-cards which are based on the Java
programming language. It is obvious that society would not be the same
without sim-cards and its Java basis.[7]

11

3 Java 8
In this chapter we will be looking into Java SE version 8, which was the first
LTS version of Java and is one of the first versions which was used for a long
time and is even still used despite being over eight years old.[36]

We will look into the general scope of this version as well as into the
new features that got added to Java SE 8. As of Java 8 there is insufficient
documentation regarding deprecated features and functions hence why we
will not go over features that were deprecated or removed in Java 8.

3.1 Features in Java 8

As this version of Java was one of the largest updates at the time, we will
first look into the already existent features and subsequently into the newly
added features of version 8.

3.1.1 Already existent Features

Before Java 8 was introduced there were not many features added with new
versions with the exception of Java 5. Here some notable added features were
the data type "Generics" which allowed for better abstraction. This means
that users could decide the final data type when instantiating the object.
Java 5 also introduced the option to now add annotations for both classes
and methods. Additionally Java 5 introduced enumerations which create or-
dered lists. From Java 5 on it was also possible to use a different syntax
for for-loops. This syntax is defined as "for(:)" whereas the traditional
for-loop (which can still be used) is defined as "for(int i=0;i<50;i++)" (as
an example).[10]

In Java 6 there were no new features added, which shows how inconsistent
the scope of updates was before adding LTS versions. Java 6 only changed
or improved some libraries.[11]

In Java 7 there was a notable feature added, that improved readability
of numbers. This means that it was now possible to add underscores to a
numeric data type in order to break large numbers up into chunks.[12]

3.1.2 New Features

Here we will look at the most notable added features, which are Lambda
expressions, improved Type Inference as well as some Annotations.[4]

12

Java 8 brought one of the most useful features that is still prevalent today
(even in other programming languages, in python for instance such expres-
sions are very widely used), namely Lambda expressions. These expressions
allow the programming of functions as so called one-liners. This means that,
when a simple function is only to be used once, it can be written and instantly
called within one line of code. Such expressions can be written everywhere
in Java.[33]

Additionally there was another feature that was improved, type infer-
ence. Type inference enables programmers to drastically reduce code needed
to instantiate objects. The programming language will here decide on the
data type itself based on how the variable is called. An example for that is
that when an integer variable gets defined and subsequently another object
is instantiated by adding this integer variable to another variable, Java will
automatically know that both the sum of the two variables as well as the
variable to be added to the integer have to be integers as well, as objects of
different data types cannot be added to one another.[38]

Another big improvement to the programming language was the intro-
duction of a sophisticated date/time API. Before Java 8 there only was a
class for date which did not include times or time zones or similar. The new
API improved features for dates and also introduced features such as the
time in general as well as time zones, formatting of times as well as a class to
better connect the time and the date class. Java 8 also introduced support
for the newest Unicode version - 6.2.0.[13]

Furthermore a new related feature to that is an enumerate function for
weekdays as well as month. These respectively have seven and twelve values
representing the names of weekdays and months. In addition to that this
also includes some basic operations for these enumerations.[13]

Java 8 also introduced some improved security features such as TLS
(Transport Layer Security) 1.2 being enabled as default as well as a new ver-
sion of an access controller which checks some code without going through
the entire stack looking for permissions. Additionally Java 8 now also offers
improved algorithms for the generation of stronger passwords.[5]

Java 8 also improved the high entropy random number generation. This
is crucial for cryptography as truly-random or pseudo-random numbers with
the highest-possible entropy are needed to create safe keys or passwords.[5]

13

Since JavaFX was still part of Java with version 8, we will also go over
how this has been improved with this release.

First of all Java 8 introduced a new theme as well as new UI controls,
namely DatePicker and TreeTableView. Furthermore has the 3D graphics
library been expanded widely. This library now includes shapes, lights, cam-
era, material and more features.[5]

In addition to that has the WebView class been improved to have better
support for HTML5, the latest version of the hypertext markup language
used in web development. Finally does JavaFX now offer compatability with
ARM-based processors. This was not a big change at the time of the release
but as of today are ARM processors becoming more and more relevant.[5]

We will no go over what are the main reasons Java 8 was so popular.
Firstly Java 8 enables users to develop applications necessary to build IoT
(Internet of Things) devices, as it is secure, scalable and flexible. Further-
more Java 8 also improved the productivity of programmers by implementing
Lambda functions which can drastically reduce the code necessary to write
functions. The new and improved data and time API also allows a more
modern and state-of-the-art build of applications. JavaFX, which was at the
time still part of the Java JDK also had a major overhaul to modernize the
front-end development of applications. Lastly the introduction of long-time
support versions was also a major reason for developers to move to Java
8, simply because older versions would not be updated and supported as
long. This is even a reason why people choose Java 8 over subsequent, newer
versions.[28]

A major reason to be using Java 8 instead of older versions is the in-
troduction of an API that allows users to use multiple cores of their central
processing units (CPU) at once whereas Java previously only used one core.
This API is called Stream. Java 8 also features a class that is called Op-
tional with which you can decide whether some variables need to be defined
or are optional for running the code. This optional call will of course also
reduce null pointer exceptions as such errors will no be thrown for optional
variables.[32]

Lastly a main reason why Java 8 is still used over versions 11 or newer
is that these new versions are now licensed and need to be paid for if they
are used commercially. This is obviously a major downside if you are either
a very small organisation that needs Java but also if you are a big enterprise
that uses Java however not to the extent where it pays off to have probably
(for large enterprises) very high licensing costs.[29]

14

While most companies could possibly switch to the open source version
of Java, namely the OpenJDK, there are known differences regarding the
support of the open source version. As well as that existed differences that
seemed significant in older versions, but are not anymore significant, that
companies probably have not yet completely realised. Lastly are there mul-
tiple open source versions where users could possibly lose track of which to
pick or even thinking that changing from closed source to open source is
coupled with heavy-impact changes.[29]

Coupled with this are the known troubles that can arise when updating
Java. Many companies are not willing to take the risk of updating to a newer
version which does not offer significant changes, as the possibility of having
to completely overhaul a whole program is always existent. This is especially
troublesome if companies keep up with the semi-annual update schedule of
Java. The possibility of everything stopping to work twice a year is a risk
almost no companies are willing to take.[34]

15

4 Changes up to Java 17
In this chapter we will look into features that were added between Java 8 and
Java 17 and subsequently into features added in Java 17. After that we will
also look at features that were deprecated or removed as of Java 17. Finally
we will outline the main differences between Java 8 and Java 17 and why
so many people are still using Java 8 despite version 17 being much more
expansive and new.

4.1 New Features

Here we will go over the most significant new features of each version coming
after Java 8 up to Java 17.

4.1.1 Java 9

Starting with Java 9, there were not many added features. The most notable
one of these is the so-called Java Module System which was also referred to
as "Project Jigsaw". Oracle Inc.[20] defined this modular system as follows:

“The Java Platform module system introduces a new kind of Java
programing [sic!] component, the module, which is a named, self-
describing collection of code and data. Its code is organized as a
set of packages containing types, i.e., Java classes and interfaces;
its data includes resources and other kinds of static information.
Modules can either export or encapsulate packages, and they ex-
press dependencies on other modules explicitly.”

Additionally the try-with-resources statement was improved for final
variables.[20]

4.1.2 Java 10

Java 10 was another version with many updates and added features.
To start with there was the adding of the "var" data type. While with this
you can define any variable as var, Java still infers the data type the variable
actually is. If a variable that is actually a String (i.e. a word) was defined
as var Java would still define it as String. This means that this is purely for
adding simplicity for coders. If someone would still want to define an integer
as a String, they will need to implicitly use String as var would define the
integer as an integer.[8]

16

In Java 10 there were also some added functions that prove to be very
useful. To start we have a .copyOf function for each a list, a set as well as a
map. This function creates an unmodifiable copy of variables of said types.
Additionally before Java 10, JMX passwords were present in clear text. With
the introduction of JDK 10 that changed in a way that now the hash value of
this password will be present. Another thing connected to hash values is the
introduction of better support for TLS (Transport Layer Security - a major
tool used for e-mail communication) session hash as well as the correspond-
ing master secrets.[21]

Furtheremore another improvement made was regarding the bytecode
generation of for-loops. This allows a better translation from the Java Code
used in the for-loops to a computer-readable language.[21]

4.1.3 Java 11 (LTS)

We will now look at the first long-term support version that followed the
Java 8 long-time support version. Long-time support versions are usually
coupled with plenty of new features but also quite a few features which were
removed. These will however be examined in the following section "Removed
or Deprecated Features".

A notable change here is that from this version of Java on, JavaFX is no
longer part of the JDK but is now a separate download, the same applies for
Java Mission Control.[22]

With the new Java 11 there also came support for newer versions of Uni-
code (versions 9 and 10). This change meant that there were now over 16,000
new characters. Some of those characters are fundamental for the 4K video
format as well as Bitcoin. Java 11 also standardized a HTML client that was
introduced in Java 9. This also means that a similar but older version of this
client was removed.[22]

Java 11 also improved the String class by improving whitespace handling
with the .strip, .stripleading and .striptrailing functions. Additionally there
is now also a function that allows to check whether a string is blank, which
checks if the variable has either no characters or only whitespaces. Further-
more there is now a function that allows to repeat a string a defined number
of times. Lastly there is now also the option to stream a string through the
Stream API.[9]

17

Another thing that is important to mention here is a .toArray function
that overloads the previously existent function with the same name. This
function differs to the older version in a way that it transforms a collection
into an array whereas the older version takes an array as an argument. Lastly
the Lambda expressions that were added in Java 8 can now be used with the
var data type that was added in Java 10. Previously variables of the var type
could not be used. A restriction here is that if one variable is of type var,
then all variables need to be of this type.[22]

There were also a few security features or functions added with this ver-
sion. First of all the signature algorithm RSASSA-PSS was added. In addi-
tion to that Java 11 also added support for a newer version of TLS v1.3. Fur-
thermore there were 2 AES encryption standards added with this version.[22]

4.1.4 Java 12

Java 12 was introduced in March of 2019 as the (partly) successor of Java
11.[36]

With this version came support for the latest Unicode 11 version. This
version meant that close to 700 new symbols would now be available in
Java. Most of those symbols are however not relevant for new emerging
technologies.[23]

Additionally Java 12 brought a new way of formatting numbers. From
this version on it will be possible to format numbers much shorter. An ex-
ample for that would be that 1 million can now be shown as "1M" instead of
"1_000_000" (here the underlines represent the Java syntax for thousands
separators).[23]

Java 12 also added some security features. First of all the Java Flight
Recorder (JFR) received some new functions: It is now possible to record
TLS handshakes with the JFR. It was from here on also possible to record
modifications of security properties.[23]

Lastly this version also improved the switch statement. Using switch as
an expression would for example shorten /simplify the code it is used on.[23]

4.1.5 Java 13

As for almost every new Java version, Java 13 introduces support for a new
Unicode version, which is 12.1. This Unicode version added over 500 new
characters. Java 13 also introduced a preview of text blocks. These are used
to assign a string to a variable that is more than one line long. Such a vari-

18

able can be defined by using three double-quotes (""") both at the beginning
and at the end of the string value. Previously such assignations were not
easily possible. Before Java 13 we would have needed to use concatenations
of multiple strings to assign such a long string. Java 13 also further improved
the switch expressions which were introduced with Java 12.[24]

Another new feature that could be very useful for many is the abil-
ity to return unused memory to the operating system (OS) if more mem-
ory is needed elsewhere. Coupled with that Java 13 also introduced an
option to set the maximum heap memory size beforehand by calling "-
XX:SoftMaxHeapSize=<bytes>". This number of bytes can also be changed
during runtime. Furthermore will Java also use more memory than allowed if
necessary, to avoid errors caused by having too little memory. In addition to
that the total maximum amount of memory has also been quadrupled from
4TB to 16 TB. These are all features that are coupled with the Z Garbage
Collector (ZGC).[24]

Some added security features are for example that TLS certificates must
now mach existent ones to allow establishing TLS connections via the TLS
handshake. Java 13 updates also added 2 different certificates and 5 in
total.[24]

While this update seems to not have brought many changes there have
been a total of over 200 changes in documents of Java APIs and over 500
changes in contexts of those APIs. This shows that while Java 13 did not
introduce many new features it still maintained and/or improved the already
existent APIs.[15]

4.1.6 Java 14

Java 14 once again did not bring many new features or enhancements. The
most notable one is the adaption of currency formats to fit accounting. This
means that negative amounts can now be shown in brackets instead of with
a leading -. This is the standard in accounting and thus a big improvement
for people using Java for such purposes. Furthermore Java 14 introduced
an experimental early version of the Z Garbage Collector for both Windows
and MacOS. The ZGC has already been mentioned before with Java 13 and
brings a few improvements in regard to efficiency with the programming
language.[25]

As with every new Java there also came new security improvements. Java

19

14 disables some weak curves of protocols such as TLS, CertPath and Signed
JAR, which are used for establishing safe connections with the help of cryp-
tography. In total Java 14 disables 47 of those curves that were deemed
weak. The Java Flight Recorder (JFR) mentioned in Java 12, is now able to
constantly monitor activities due to the introduction of a new API. This is
now activated as a default JFR setting.[25]

4.1.7 Java 15

We will now look into the new features added with Java 15, which is one of
the bigger updates compared to recent ones. First of all Java now supports
Unicode 13.0 which adds over 5,900 characters. This is one of the biggest
updates of Unicode in Java since the programming language was created.[16]

With Java 15 also came a new function called isEmpty for character se-
quences. This function can, as the name implies, return boolean values based
on whether a character sequence contains characters or not. Java 15 also in-
troduced hidden classes. This means that when someone tries to get the
class name "/" is returned unlike with normal classes. Additionally calling
descriptorString will return a dot (".") instead of a description of such a hid-
den class. Lastly getNestMembers will not throw an exception when someone
is not part of the members but rather return the name of the host as well as
members’ names.[16]

Java 15 also added text blocks, which allows users to input strings that
are longer than one line and also automatically formats this block in a rea-
sonable way.[16]

We will now look at the added security features and functions of Java
15. A new function that allows users to check whether a certificate has been
revoked has been added to jarsigner and is called revCheck. Additionally
jarsigner as well as keytool are now able to put out warnings if weaker algo-
rithms are used in cryptography. Furthermore has the TLS signature config-
uration been expanded on both the client side and the server side. TLS 1.3
introduced the possibility to point out certificate authorities (CA) that are
supported on different endpoints. This is once again also for both the client
and the server side.[16]

20

4.1.8 Java 16

Java 16 introduced the option to access native code through a new Foreign
Linker API. This is also coupled with another new API that allows Java to
access memory that is not allocated to Java but rather to a different heap.
All this improves binding to native libraries. Java 16 also made the en-
capsulation of the JDK’s internal elements stronger which means that code
containing calls to those elements could now fail.[17]

Java 16 also improved the Date Time API further by introducing the
possibility to define time spans in a day, such as "in the morning" or "at
evening". This adds to already existent am and pm, a way to define whether
it is before or after midday.[17]

The ZGC was also once again improved with Java 16. ZGC is now capa-
ble of processing multiple thread stacks at the same time which also reduces
pauses of the ZGC.[17]

We will now look at the added security features of Java 16. First of all it
is now possible to sign JAR files using the RSASSA-PSS algorithm as well
as the EdDSA algorithm. The SHA-3 algorithm is now also supported by
the providers SUN, SunRsaSign, SunEC as well as SunPKCS11. Further-
more SunJSSE now supports TLS with the EdDSA algorithm. Additionally
the maximum size of the TLS or DTLS handshakes has also been adapted
to 32kb. The maximum length of a certificate in TLS and DTLS is now
10. The encoding of Application-Layer-Protocol-Negotiation values has also
been improved within TLS. The sealed classes which were introduced in Java
15 have also been previewed again in Java 16.[17]

Java 16 also made pattern matching a feature for the instanceOf oper-
ator. This “allows common logic in a Java program to be expressed more
concisely and safely, namely the conditional extraction of components from
objects”.[17]

4.1.9 Java 17 (LTS)

We will no move on to Java 17, the next long-time support version of the
Java programming language and a key version for this paper.

The first new feature added are so called sealed classes, which were avail-
able as a preview feature in Java 15. Thereafter they were improved and
once again available for preview in Java 16. With Java 17 now came the
official release and introduction of these classes. Java 17 also introduced pat-

21

tern matching for switch expressions as well as more features for patterns as
a preview. A new API was introduced for users to access large icons with
higher quality as previously. This API is, as of Java 17, only optimized on
Windows.[18]

Pseudo-random number generators and random number generators are of
huge importance, not just for general coding but for cryptography in partic-
ular. Java 17 improved those pseudo-random number generators by adding
new interfaces and implementations as well as new algorithms.[18]

Another important new feature, especially for ease of coding, is the im-
provement of error messages by adding the source of where the error was
thrown. An important update is that Java 17 introduced an early access
version of Java for ARM computer chips, prevalent in new Apple Macs. It
is now also possible to convert primitive data types as well as byte arrays to
the hexadecimal format. In addition to that there are also some functions to
format those converted hexadecimal strings.[18]

We will now look at the added security features of Java 17.
First of all the SunJCE provider does now support the AES encryption

algorithm for data encryption and decryption as well as key wrapping and
unwrapping. SunPKCS11 now supports better handling of native resources
through new attributes through which it can for example be specified how
often tokens are destroyed. SunPKCS11 also added some encryption and key
generation algorithms with Java 17.[18]

Java 17 also introduced configurations for TLS, namely being able whether
to allow/enable extensions used within a client or even a whole server. This
can however impact the TLS connection or even completely hinder it from
establishing a connection.[18]

Java 17 is, not only because of being a long-time support version, a major
update for the programming language. Java 17 brings many new features
with previous updates rarely being this expansive.

4.2 Removed or Deprecated Features

In this section we will go over the features that were removed from Java
10 up to Java 17. Java 9 will not be shown here because of insufficient
documentation of said removed features.

22

4.2.1 Java 10

With the first big update since Java 8 there were also a few features for which
the support was omitted or which were completely removed.

First of all two function previously used for DOM (Document Object
Model - a fundamental part of web development) manipulation, namely the
"com.sun.java.browser.plugin2.DOM" and "sun.plugin.dom.DOMObject" have
been removed and were replaced by a different function.[21]

The update also removed old versions of the "LookAndFeel" libraries
which are used for GUI (graphical user interface) development.[21]

4.2.2 Java 11 (LTS)

As already mentioned earlier the older version of the HTML client was re-
moved with Java 11. Another minor change was the removal of some fonts,
the fonts from the Lucida family. A distinct thing that was also already
mentioned earlier was the removal of Java Mission Control and JavaFX from
the JDK. These are now separate downloads.[22]

4.2.3 Java 12

A class that was deprecated in Java 11, the SecurityWarning class, was re-
moved in Java 12 as it was unused. Java 12 also removed a few file manage-
ment methods, namely the finalize Methods for both the FileInputStream
and FileOutputStream. These 2 methods were deprecated in Java 9 and re-
moved in Java 12 while being replaced by the Cleaner method. In addition
to that the finalize methods for ZipFile, Inflator and Deflator were removed
after also being deprecated in Java 9. The removal of this method in regard
to ZipFile, Inflator and Deflator will however result in throwing the Throw-
ing exception when finalize were to be called.[23]

With an update of Java 12 there were additional removals of certificates
as they expired since the initial version of Java 12 was released. These were
3 different types of root certificates, namely two DocuSign certificates, two
Comodo certificates as well as a T-Systems Deutsche Telekom certificate.[23]

4.2.4 Java 13

In Java 13 there were some removals within the Runtime class. Namely the
traceInstructions and traceMethodCalls methods. These have been removed
as the functionality has been replaced by similar methods within the Java

23

Virtual Machine Tool Interface (JVMTI).[24]

There have also been some security changes with the introduction of Java
13: Some methods for RSA-cryptography have been removed because they
have been replaced by a different class. These methods were only still in
Java for compatibility reasons. This impacts 5 methods within the SunJSSE
provider. Lastly some certificates, similar to those removed in older Java
versions have also been removed with Java 13.[24]

4.2.5 Java 14

Java 14 removed an older garbage collector, namely the Concurrent Mark
and Sweep (CMS) garbage collector. This could have been done because of
the introduction of the new ZGC garbage collector.[25]

In regard to security Java 14 removed the security.acl API and its classes
as well as it deprecated some more (elliptic) curves, now for the SunEC
provider, which earlier provided similar functionality as the TLS, CertPath
or Signed JAR curves that were also disabled as of Java 14. Oracle also
states that some curves will be replaced by more modern ones.[25]

The updates of Java 14 have as usual removed some certificates due to
them expiring. Among those are Comodo and DocuSign Root CA certificates.[25]

4.2.6 Java 15

Most features removed in Java 15 have been deprecated in Java 11 or sub-
sequent versions. A JavaScript Engine called Nashorn has for instance been
deprecated in Java 11 and removed here in Java 15. Furthermore Java 15
also removed 2 certificates of both the Comodo and DocuSign Root CA cer-
tificates. With Java 15 also some SunEC curves used for cryptography have
been disabled because of being out of date. In total those curves disabled
were a total of around 50 curves.[16]

4.2.7 Java 16

Java 16 removed 5 1024-bit RSA keys which were deemed weak. In addition
to that a plethora of elliptic curves have once again been removed by the
SunEC provider with Java 16.[17]

Overall there have not been many removals of features or features that
were deprecated with Java 16 that were significant. Rather there have been

24

some more security features that were removed mostly because of being un-
used or unsafe. With updates of Java 16 there have once again been Root
CA certificates that have been removed but also some certificates that have
bee added.[17]

4.2.8 Java 17 (LTS)

Java 17 removed the option to strongly encapsulate internals of Java and will
now do this without the option of removing the encapsulation with only a
few exceptions. Furthermore the Java 17 updates also removed some root
certificates, as usual. These contain a Google GlobalSign root certificate as
well as a IdenTrust root certificate.[18]

Other than that there have only been little features or functions that have
been removed hence why we will now look at deprecated ones.

First of all the Applet API has been deprecated since most browser do no
longer support Java plug-ins. Java 17 also deprecated the security manager,
one of the major deprecations/removals of recent Java versions.[18]

25

5 Key Differences Between Java 8 and 17
We will no go over the key differences between Java version 8 and version 17.
As described in the previous section there have been a plethora of changes
between those versions. This section will point out the most significant ones.
We will first look at which features were added or removed and subsequently
how the security of the programming language has improved between both
versions.

Before looking at the technical differences between the versions we will
talk about the other changes that happened between Java 8 and Java 17.

First of all a key reason for many people to still use Java 8 is the fact that
using the Oracle JDK is no longer free to use for commercial causes. This
changed with Java 11, where the relevant licensing model got introduced.
While the open source version of Java, namely Open JDK, is still free to
use, many people using Oracle JDK would presumably not want to change
to the open source version for different reasons. Important to note here is
that there are only little differences between the 2 versions, which are pretty
much insignificant.[29]

Furthermore it makes sense that organizations keep using one version
longer rather than keeping up with the very frequent new updates as this
can completely change how programs run, which means a lot of maintenance
for companies. This is one of the main reasons why many organizations keep
or kept using Java 8 instead of moving to Java 15 or similar. While Java
11 was another version for which long-time support is provided, this version
never became as popular as Java 8.[29]

Corporations did not even migrate to Java 9 even though this version
brought significant new features (more on that in section 5.1) because the
process of updating everything to work with version 9 was too much work
for too little return for those companies.[34]

What we notice now is that people using Java 8 are moving to Java 17,
probably because the many new features outweigh the possible difficulties
coupled with switching versions.[34]

Another reason for that is that Oracle does no longer provide free public
updates for the commercial version of Java 8. These updates expired in
March of 2022.[36]

26

5.1 Features

We will now look into the most significant features that were added between
Java 8 and Java 17 but also at those removed that had the biggest impact.

A first big update that was shortly mentioned above was the introduction
of the Java Module System with Java 9. Even though this was a big update
it was still not worth the update from Java 8 for most people though.[34]

Java 10 also brought a new feature that is vastly used in today’s world of
programming, namely the data type var, with which every variable can be
assigned. Java will in the background determine the actual data type like
integer or string.[8]

From Java 11 on JavaFX is no longer part of the JDK, this has however
not much of an impact on users since JavaFX is still easily downloadable but
as a separate product. Java11 also brought the option to trim whitespaces
within strings, which is very useful for data cleaning. Furthermore there was
a new HTTP client introduced, which was huge for web development.[22]

Java 12 and Java 13 as well as Java 14 did not bring new features that
would on its own make most people switch from the LTS version 8 to either
of those.

With Java 15 came the official introduction of text blocks for strings,
which allow multi-line strings to be easily assigned to variables while also
having good formatting of those blocks.[16]

Throughout the versions from Java 8 to Java 17 the support for newer
versions of Unicode also came. Some of those versions were of significant im-
portance for new technologies. Some versions for example introduced symbols
that are needed to develop Bitcoin or the 4K resolution. This can mean that
some programmers or organizations would need to update to newer versions
in order to develop such technologies.[22]

Throughout the versions APIs like the Date time API which was intro-
duced in Java 8, were further improved.[17]

Error handling and exception throwing was also improved. The Null-
Pointer Exception was for example enhanced in a way that it now shows in
which line the error was thrown. This is obviously significant for everyday
coding.[34]

The switch expressions were also finally improved to make them usable
again without being cumbersome as those were not enhanced for a long time
at first.[34]

Java also introduced a new garbage collector, namely the ZGC (Z Garbage

27

Collector), which is much more efficient by reducing downtime of the garbage
collector. Furthermore the ZGC as well as a second garbage collector (called
G1) is also able to return unused memory to the OS. This is significant for
the speed of the programming language.[34]

We will now look at the features that were deprecated and/or removed
between Java 8 and Java 17.

First of all features that were removed from the JDK are JavaFX and
also Java Mission Control. While those were removed, they are still available
as a separate download, they are simply not a part of the JDK anymore.[22]

With Java 14 a garbage collector, namely the CMS (Concurrent Mark
and Sweep) garbage collector, has been removed. This is however not a big
impact since the ZGC and the G1 garbage collectors are more efficient.[25]

Finally, in Java 17 the security manager was deprecated, which means
that it will be removed in future versions of the programming language. It
is however still available to be used.[18]

5.2 Security

We will now look at how the security of the programming language has im-
proved from Java 8 through Java 17. Improved security is a key reason for
switching to the newest versions, especially since Java 8 does no longer re-
ceive regular free updates for the commercial version.

With Java 11 came support for the current TLS version, namely TLS
v1.3. This is a major upgrade since TLS is used almost everywhere where
internet is involved nowadays. Furthermore a new RSA signature algorithm
as well as 2 AES standards were added with this version[22]

In Java 12, the Java Flight Recorder was expanded so that it can now
record TLS handshakes along with further features.[23]

Java 13 was also improved in regard to TLS. From this version on TLS
certificates must be verified by matching existent ones to establish TLS con-
nections. Furthermore Java 13 removed some RSA methods because they
have since been replaced.[24]

The Java Flight Recorder was further improved with Java 14 to monitor
activities more consistently.[25]

While Java 15 further improved TLS, Java 16 introduced the SHA-3 al-
gorithm through multiple providers. Furthermore the TLS and DTLS hand-
shake size was improved to a maximum of 32kb.[16][17]

28

Finally we will look at the new security features of Java 17. With this ver-
sion came support for AES en- and decryption through the SunJCE provider.
Furthermore the features of TLS were further expanded and improved.[18]

With the new versions being released, as well as with the subsequent up-
dates of the versions the security certificates were also introduced but also
removed. This is obviously critical since expired certificates are big security
holes. In addition to that a few versions also removed weak curves, which
are used for key generation with different key generation algorithms. Such
curves were removed in Java 14, 15 and 17.[25][16][18]

To conclude this section we can clearly see that for security reasons alone
it would be smart to change to Java 17 or even the newest version available
(which is currently Java 18).

Java also got significantly faster, and more efficient through Java 17 which
is of huge importance as well, since programs get larger and larger. The added
features do also add many handy ways to code more efficiently as well as code
newer technologies.[34][22]

29

6 Outlook up to Java 21 (LTS)
In this section we will look at what will come or has already been released
after Java 17. We will at first look at the next version that has been released,
namely Java 18, and what this version has brought. Subsequently we will
look at what is most likely to be changed within the programming languages
up to the next long-time support version, which is Java 21. Finally we will
look at some suggestions on how Java could further be improved to expand
its use or enhance current use cases.

6.1 Java 18

We will now look at what Java 18 has brought but also which features were
deprecated or removed, similar to how we analyzed the new versions in sec-
tion 4.

First of all Java 18 now enabled the character set (charset) UTF-8 as its
default for all Java APIs. This is significant in a way that the charset used
is now standardized which makes the interoperability between APIs but also
switching between them much less cumbersome. Furthermore has Java 18
also introduced a new web server which is supposed to be very easy-to-use
and minimal. This is obviously important for the development of web ap-
plications. Java 18 has also brought another enhancement related to web
development, it has introduced an interface to use name and address resolu-
tion services outside of Java’s built-in ones.[19]

The Vector API was also introduced to “express vector computations
that reliably compile at runtime to optimal vector instructions on supported
CPU architectures, thus achieving performance superior to equivalent scalar
computations”.[19] This further enhances the performance of the program-
ming language. Performance has also been improved with the help of further
expanding multiple garbage collectors, namely the ZGC, the SerialGC as well
as the ParallelGC, to now being able to handle string deduplication.[19]

Java 18 has also further improved in regard to security features by adding
new APIs and expanding already existent ones. These include APIs from the
SunPKCS11 provider.[19]

Java 18 has obviously also removed some features. There have once again
been root certificates which have been removed. Other than that there have
not been significant removals or markings for removal.[19]

30

6.2 Outlook

We will no go over what is most likely to be introduced with Java 19 as well
as Java 20 and Java 21. While there is already a pretty good idea of what is
to come in Java 19, the following versions are not yet well documented/talked
about. Hence why we will focus more on Java 19.

The signs are looking good that Java 19 will finally officially publish fea-
tures that have long been expected and awaited. Most of those features have
until now only been in the testing or incubator stages in the previous ver-
sions. Furthermore will Java 19 also likely introduce anticipated features as
previews to be released in subsequent versions.[27]

The first anticipated feature is the ability to use code outside the Java
runtime which can be made possible by accessing memory not assigned to
Java. This feature has already been in the incubator in previous versions
and is expected to be officially released in Java 19.[27]

Furthermore the vector API which has already previously been mentioned
with Java 18, could see its official release with Java 19. The same is possi-
ble for pattern matching with switch expressions, which has also undergone
multiple previews up until Java 18.[27]

There is also some speculation regarding features that are not as likely as
the previously mentioned ones, to be implemented in Java 19. These include
mostly previews as the features pending for official release have already been
talked about. First of all the ability to “unify the treatment of reference and
primitive types in generic code by allowing Java type variables to range over
both kinds of types”[27] which is referred to as universal generics could find
its way into Java 19 as a preview. This feature as well as another feature
probably coming, namely value objects, are both part of Project Valhalla.[27]

Java 19 could also improve one of its garbage collectors, namely the G1
garbage collector to reduce the latency of the garbage collector be introduc-
ing so-called "region pinning". This would further improve the performance
of the programming language. Reasons to keep updating Java as a user.[27]

While it is possible that not all of those features will be introduced in
Java 19, this could mean that they will be implemented in Java 20 or even
Java 21. What is known is that these features will not be forgotten just
because they did not come with Java 19.[27]

31

Unfortunately there are currently very few speculations that go beyond
Java 19 as it is not even fixed what Java 19 itself will bring to the program-
ming language.

6.3 Suggestions

In this section we will look at how Java could be enhanced or expanded to be
more used in fields where the programming language has lost relevance but
also how Java could be introduced to fields where only other programming
languages like Python or C are used.

6.3.1 Mobile Development

We will start by analyzing why Java is struggling to keep up with different
programming languages when it comes to mobile app development. Com-
petitors for Android apps are mainly Kotlin. Kotlin was created by being
compatible to Java 6. A main reason for the growing importance of Kotlin
is Google, which is focusing on Kotlin instead of Java.[30]

A problem that Java has in comparison to Kotlin, that can however not
be tackled is that Kotlin needs much less code than Java much like how Java
needs less code than C or Python needs less than Java. This also makes the
language easier to learn and to read. Kotlin, similar to Python, does not
need semicolons, in contrast to Java. This is another reason that makes Java
harder to read. Furthermore does Kotlin better handle the declaration and
casting of data types by being a concise language.[30]

While Java is known for its wide compatibility and platform indepen-
dence, Kotlin takes advantage of this by being used in parallel to Java and
thus being able to use Java libraries. This is possible without much transla-
tion work or needing to know Java. In addition to that is Kotlin similar to
Java while also being easier (as already mentioned earlier).[30]

One of the general big disadvantages of the Java programming languages
are the so called null reference exceptions. Kotlin does not have this ex-
ception in most cases. While it is still possible to get such exceptions, for
example through directly calling it, the possibility of it happening is slim to
none.[30]

32

Java is of very little importance for mobile app development for iOS
devices on the other hand. The reason for that is that Apple does not natively
support Java. This means that a virtual machine would be needed to delevop
such apps for iOS devices. While there are companies doing that, Java will
most likely stay in limited relevance unless Apple will sometime enable Java.
There is not much that can be done from the people developing Java to get
more programmers to use Java for these apps.[1]

6.3.2 Possible Upcoming Use Cases

We will no look at emerging technologies where Java is not largely present
and how this could change.

Data Science and Machine Learning
We will start by looking at how Java could gain importance in Data Science
and why Python or even R are the preferred languages used or Data Science.

Once again is the complexity of Java, especially in comparison with
Python, one of the main reasons of why Java is not as relevant as Python
in this case. Python is not only much simpler but also much shorter and
easy to learn for users. This is especially important in the case of machine
learning, where better readable code plays a huge role.[31]

Many frameworks that are prevalent in Big Data are however based on
Java. Apache Spark is for instance one of the main Big Data frameworks
that is used in Python (where it is referred to as PySpark). Scalability plays
a huge role with Big Data and this is where Java-based frameworks excel,
in comparison to Python packages/libraries. Not only the scalability is an
advantage here, Java is in general faster than Python.[31]

Here it becomes clear that really only the Syntax is the main disadvan-
tage of Java in comparison to Python. So for people already knowing Java
well and not knowing Python at all, it could definitely make sense to start
building data science programs directly with Java, especially when it is fore-
seeable that the amount of data will need scalability, be it now or in the
future.

Blockchain
Another emerging technology which will play a huge role in the near future
is blockchain. “Blockchain is an open, distributed ledger that can record
transactions between two parties efficiently, in a verifiable and permanent

33

way.”[6]
Blockchain is currently mainly used by cryptocurrencies to document

transactions with the respective currency. The idea of the distributed ledger
can however be expanded to many fields where immutability of ledgers plays
a big role. Even the security, which is coupled with the immutability and
decentralization of blockchains, is enormous with this technology. More and
more global players are starting to introduce it within their systems.[6]

As a blockchain is based on blocks that are interconnected to each other,
an object-oriented programming language is needed to program this technol-
ogy. As Java is one of the fastest programming languages and also has all
the features needed for blockchain, it will definitely play a huge role when
it comes to the development of blockchain. If the Java developers extend
the programming language with a few APIs that directly help with program-
ming this emerging technology, it can definitely establish itself as the main
language used.[6]

34

7 Conclusion and further Research
The aim of this paper was to analyze the evolution of the Java programming
language with an emphasis on the versions 8 and 17. The focus laid in par-
ticular on how these 2 versions differ and why people use the respective one.

We started by looking at the reasons for the popularity of Java such as
the object-orientation, platform independence or even performance. Further-
more did it become clear that the use cases of the programming language are
of vast importance in today’s digital world. Applications, big data or em-
bedded systems are all more important than ever.

Moving on to the analysis of Java 8 we found that the programming
language at the time already had a huge number of features that are still
prevalent today. We saw that most programmers needs were and still are
satisfied by this version. The introduction of lambda expressions did al-
legedly bring one of the biggest new features added to date. This obviously
further improved the likeability of this version. The fact that Java 8 also was
the first long-time support version just added another reason for people to
like this version.

By analyzing the subsequent versions of Java 8 we found that the general
performance in regard to speed and compatibility increased largely. In addi-
tion to that did changes like the Java Modular System or new and improved
garbage collectors (also influencing performance) coupled with a vast number
of security improvements modernize the programming language even further.
The introduction of support for the at the time newest Unicode versions
enabled users to develop emerging technologies such as the cryptocurrency
Bitcoin.

Another change to the programming system that happened between Java
8 and Java 17 was the introduction of a licensing model, urging users to keep
using Java 8 as long as possible. The end of support for the version of Java
8 as well as the largely improved security portfolio that came since then will
most probably mean the end of the popularity for version 8 in the near future.

The general future of the programming language does look quite good:
There are big features to be introduced in the upcoming versions, most prob-
ably already in version 19, which will be released in September of 2022. Fur-
thermore could Java establish itself as the main programming language used
for blockchains. The growing importance of this technology will obviously
also make Java even more popular.

35

This paper could be used as a basis to further analyze the described
changes by showing their direct influence in Java code as well as a deeper look
into different APIs that have changed the most since Java 8. Analyzing such
changes more closely could also further encourage users of Java to change to
Java 17 or a later version. In addition to that could the most notable features
of Java be compared to other similarly popular programming languages, such
as Python or C.

36

References
[1] CodeCondo. Is it possible to use java with ios? https://codecondo.

com/is-it-possible-to-use-java-with-ios/. [Online; accessed 28-
May-2022].

[2] Wikipedia contributors. High-level programming language —
Wikipedia, the free encyclopedia. https://en.wikipedia.org/
w/index.php?title=Highlevel_programming_language&oldid=
1078244053, 2022. [Online; accessed 6-April-2022].

[3] Wikipedia contributors. Java (programming language) — Wikipedia,
the free encyclopedia. https://en.wikipedia.org/w/index.
phptitle=Java_(programming_language)&oldid=1080629199, 2022.
[Online; accessed 6-April-2022].

[4] Oracle Corporation. Java programming language enhancements.
https://docs.oracle.com/javase/8/docs/technotes/guides/
language/enhancements.html#javase8. [Online; accessed 30-April-
2022].

[5] Oracle Corporation. What’s new in jdk 8. https://www.oracle.com/
java/technologies/javase/8-whats-new.html. [Online; accessed 30-
April-2022].

[6] Roman Golovin. Java and blockchain â€“ a
match made in heaven. https://kodejava.org/
java-and-blockchain-a-match-made-in-heaven/. [Online; ac-
cessed 28-May-2022].

[7] Software Testing Help. What is java used for: 12 real
world java applications. https://www.softwaretestinghelp.com/
real-world-applications-of-java. [Online; accessed 20-April-2022].

[8] Chua Hock-Chuan. Jdk 10 new features. https://www3.ntu.edu.sg/
home/ehchua/programming/java/JDK10_NewFeatures.html. [Online;
accessed 07-May-2022].

[9] Chua Hock-Chuan. Jdk 11 (18.9)(lts) new features. https://www3.ntu.
edu.sg/home/ehchua/programming/java/JDK11_NewFeatures.html.
[Online; accessed 15-May-2022].

[10] Chua Hock-Chuan. Jdk 5 new features. https://www3.ntu.edu.sg/
home/ehchua/programming/java/JDK5_NewFeatures.html. [Online;
accessed 30-April-2022].

37

[11] Chua Hock-Chuan. Jdk 6 new features. https://www3.ntu.edu.sg/
home/ehchua/programming/java/JDK6_NewFeatures.html. [Online;
accessed 30-April-2022].

[12] Chua Hock-Chuan. Jdk 7 new features. https://www3.ntu.edu.sg/
home/ehchua/programming/java/JDK7_NewFeatures.html. [Online;
accessed 30-April-2022].

[13] Chua Hock-Chuan. Jdk 8 new features. https://www3.ntu.edu.sg/
home/ehchua/programming/java/JDK8_NewFeatures.html. [Online;
accessed 30-April-2022].

[14] Cay S. Horstmann. Core Java, Volume I: Fundamentals. Oracle Press,
12 edition, 12 2021.

[15] Oracle Inc. Api differences between java se 12 (build 32) & java
se 13 (build 33). https://cr.openjdk.java.net/~iris/se/13/
latestSpec/apidiffs/overview-summary.html. [Online; accessed 18-
May-2022].

[16] Oracle Inc. Consolidated jdk 15 release notes. https://www.oracle.
com/java/technologies/javase/15all-relnotes.html#JSERN15.
[Online; accessed 19-May-2022].

[17] Oracle Inc. Consolidated jdk 16 release notes. https://www.oracle.
com/java/technologies/javase/16all-relnotes.html#JSERN16.
[Online; accessed 19-May-2022].

[18] Oracle Inc. Consolidated jdk 17 release notes. https://www.oracle.
com/java/technologies/javase/17all-relnotes.html#JSERN17.
[Online; accessed 19-May-2022].

[19] Oracle Inc. Consolidated jdk 18 release notes. https://www.oracle.
com/java/technologies/javase/18all-relnotes.html. [Online; ac-
cessed 27-May-2022].

[20] Oracle Inc. Java platform, standard edition java language
updates. https://docs.oracle.com/javase/9/language/toc.htm#
JSLAN-GUID-B06D7006-D9F4-42F8-AD21-BF861747EDCF. [Online; ac-
cessed 07-May-2022].

[21] Oracle Inc. Jdk 10 release notes. https://www.oracle.com/java/
technologies/javase/10-relnote-issues.html. [Online; accessed
15-May-2022].

38

[22] Oracle Inc. Jdk 11 release notes. https://www.oracle.com/java/
technologies/javase/11-relnote-issues.html. [Online; accessed
15-May-2022].

[23] Oracle Inc. Release notes for jdk 12 and jdk 12 update
releases. https://www.oracle.com/java/technologies/javase/
12all-relnotes.html. [Online; accessed 17-May-2022].

[24] Oracle Inc. Release notes for jdk 13 and jdk 13 update
releases. https://www.oracle.com/java/technologies/javase/
13all-relnotes.html#JSERN13. [Online; accessed 18-May-2022].

[25] Oracle Inc. Release notes for jdk 14 and jdk 14 update
releases. https://www.oracle.com/java/technologies/javase/
14all-relnotes.html#JSERN14. [Online; accessed 18-May-2022].

[26] Simon Kendal. Object oriented programming using Java. Bookboon,
2009.

[27] Paul Krill. Java 19 could be big. https://www.infoworld.com/
article/3652336/java-19-could-be-big.html. [Online; accessed 27-
May-2022].

[28] Caroline Kvitka. 8 reasons to love java 8. https://www.forbes.com/
sites/oracle/2014/03/26/8-reasons-to-love-java-8. [Online; ac-
cessed 18-May-2022].

[29] Framework Training Limited. Why is java 8 more popular
than java 14? https://www.frameworktraining.co.uk/blog/
why-is-java-8-more-popular-than-java-14/. [Online; accessed 18-
May-2022].

[30] Disha Misal. 5 reasons why developers choose
kotlin over java. https://analyticsindiamag.com/
5-reasons-why-developers-choose-kotlin-over-java/. [On-
line; accessed 28-May-2022].

[31] ProjectPro. Java vs python for data science in 2022-
what’s your choice? https://www.projectpro.io/article/
java-vs-python-for-data-science-in-2021-whats-your-choice/
433. [Online; accessed 28-May-2022].

[32] Raoul-Gabriel Urma. Introducing java 8. https://www.oreilly.com/
content/introducing-java-8/. [Online; accessed 18-May-2022].

39

[33] W3Schools. Java lambda expressions. https://www.w3schools.com/
java/java_lambda.asp. [Online; accessed 30-April-2022].

[34] Dariusz Wawer. Java 17 features: A comparison between versions 8 and
17. what has changed over the years? https://pretius.com/blog/
java-17-features/. [Online; accessed 24-May-2022].

[35] Wikipedia contributors. Interpreter (computing) — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?title=
Interpreter_(computing)&oldid=1078926915, 2022. [Online; ac-
cessed 6-April-2022].

[36] Wikipedia contributors. Java version history — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Java_
version_history&oldid=1080703318, 2022. [Online; accessed 6-April-
2022].

[37] Wikipedia contributors. Javafx — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=JavaFX&
oldid=1064852607, 2022. [Online; accessed 20-April-2022].

[38] Wikipedia contributors. Type inference — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Type_
inference&oldid=1082307610, 2022. [Online; accessed 30-April-2022].

40

