
1

CSS – Cascading Style Sheets

History, Concepts and Nutshell Examples

Author: Oliver Kerschbaumsteiner, h11801721

Seminar Paper

Submitted: December 16th, 2021

Vienna University of Economics and Business

Seminar Business Information Systems [0095]

Advisor: Univ. Prof. Mag. Dr. Rony Flatscher

2

Declaration of Authenticity

I assure:

• to have individually written, to not have used any other sources or tools than

referenced and to not have used any other unauthorized tools for the writing of

this seminar paper.

• to never have submitted this seminar paper topic to an advisor neither in this,

nor in any foreign country.

• that this seminar paper matches the seminar paper reviewed by the advisor.

Date: December 16th, 2021 Signature

 (Oliver Kerschbaumsteiner)

3

Table of Contents

1 Introduction .. 5

2 CSS – History and Development ... 5

2.1 Web Design Before Cascading Style Sheets .. 6

2.2 History of Cascading Style Sheets .. 7

2.3 Development Process of CSS ... 8

2.4 CSS Levels .. 9

3 Operating Principle of CSS .. 10

3.1 Concept ... 11

3.2 Box Model ... 11

3.3 Syntax ... 12

3.4 Selectors ... 13

3.4.1 Simple Selectors ... 13

3.4.2 Combinator Selectors ... 15

3.4.3 Pseudo-Class Selectors .. 16

3.4.4 Pseudo-Elements Selectors .. 16

3.4.5 Attribute Selectors ... 16

3.5 Ways to Insert CSS ... 18

3.5.1 Insert into HTML ... 18

3.5.2 Insert into XML .. 20

4 Example of Use ... 21

4.1 Using CSS Frameworks .. 21

4.1.1 Components and Advantages ... 21

4.1.2 Popular Frameworks ... 22

4.2 Nutshell Examples ... 23

4.2.1 General ... 24

4.2.2 Navigation Bar .. 24

4

4.2.3 Picture ... 27

4.2.4 Flexbox ... 28

4.2.5 Grid ... 31

4.2.6 Footer ... 33

5 Summary and Outlook ... 33

References ... 35

List of Figures ... 37

Appendix ... 39

HTML-Script .. 39

CSS-Code ... 44

5

1 Introduction

CSS, short for Cascading Style Sheets, is a style sheet language and besides HTML

and JavaScript, one of the core languages of the world wide web. Therefore, it mainly

is used in combination with HTML, but can also be applied to other XML-based docu-

ments. The purpose of CSS is the separation of the presentation specifications and

the content itself.

The Norwegian computer scientist Håkon Wium Lie proposed the first version of CSS

and over time the style sheet language became the standard of the World Wide Web.

The development and maintenance are carried out by a working group of the World

Wide Web Consortium (W3C).

This seminar paper is structured as follows. First, the history and development of CSS

are examined. Furthermore, the basic concept, the syntax, and different forms of se-

lectors are explained in detail. Also, the insertion of CSS files into HTML and XML

documents is shown. Afterward, the usefulness of CSS frameworks is discussed, and

some framework examples are given. Finally, a HTML document is styled with the help

of a CSS file in a case study.

2 CSS – History and Development

The first chapter of this term paper is about the history and development of Cascading

Style Sheets. First, there is a short historical description of the time before the intro-

duction of CSS. After that, the history, and the technical development of CSS since its

introduction is examined in more detail.

6

2.1 Web Design Before Cascading Style Sheets

Cascading Style Sheets is a style sheet language and is now considered as the stand-

ard in the field of website design. But there was a time before CSS and HTML existed.

Before HTML was introduced, there already was SGML (Standard Generalized Markup

Language), which was the base for HTML [JaLe97]. Before style sheet languages were

considered, the layout of web pages was determined by the use of tables. Disad-

vantages, such as the high bandwidth requirements, led to the development of solu-

tions for tableless web design. The first approach was called FOSI. FOSI documents

were written in SGML itself. This was a logical approach because at this point many

web developers were already familiar with HTML, which is a subset of SGML. Never-

theless, it was only considered as an interemistic solution. The actual standard should

have become DSSSL (Document Style Semantics and Specification Language). This

language is based on a subset of the functional programming language Scheme.

Therefore, DSSSL is not only a style sheet language but more a programming lan-

guage. However, there were two reasons why DSSSL was not able to establish itself

as the standard in the long term. On the one hand, like other Scheme-based lan-

guages, it had too much parenthesis. On the other hand, the released specification

included 210 separate designable properties, which may have intimidated web devel-

opers [Bloo17].

In 1990, Tim Berners-Lee created the first web browser which at first was called World-

WideWeb and later was renamed Nexus. He later launched the first website in August

1991, and also published a document that contained the first HTML tags in October

1991. The World Wide Web was created as a platform for publishing documents elec-

tronically. The problem was that there was no way to style the layout and the overall

appearance of these HTML documents. Although the separation of the document’s

structure and its presentation was a goal of HTML since its introduction, there was no

standardized concept for styling websites. It was up to the different browsers, how they

displayed the web pages. Therefore, every browser had its styling language, all of

which were very similar. In 1993, the browser NCSA Mosaic was launched. This

browser brought the web to the masses. In terms of styling, however, it offered fewer

options than its predecessors. Web developers, on the other hand, demanded more

control over how the web pages they wrote were presented. The Norwegian web

7

pioneer Håkon Wium Lie recognized the need for a style sheet language for the web.

In 1994, he published the Cascading HTML Style Sheets proposal, which should be

the basic concept of CSS [Bos16].

2.2 History of Cascading Style Sheets

After the publishing of Cascading HTML Style Sheets by Håkon Wium Lie, Bert Bos

responded to this proposal. Bos was working on a highly customizable browser at the

time and decided to team up with Lie to work together on the style sheet language.

With Bos' contribution, the style sheet language changed so that it was no longer only

designed for HTML but was also compatible with other common markup languages.

Therefore, Cascading HTML Style Sheets was renamed Cascading Style Sheets

[Bos16].

In November 1994, the first proposal of CSS was presented at the Web Conference in

Chicago. The proposal faced some opposition as many experts felt it was too simple

to meet the requirements [Bos16].

In addition to CSS, there were about 10 other style sheet languages that were pro-

posed at this time. DSSSL for example was one of them. The feature that distinguished

CSS from all the other proposals was the approach, that the user, the author, and the

technical possibilities of the display devices and the browser should all influence the

design [Bos16].

The balance between the influence of users and authors on the presentation of web

pages triggered a fundamental discussion at the next Web Conference in 1995. Web

developers felt they should have the power to decide how the document is ultimately

presented. Lie and Bos argued that the user should have the last word, as he is the

one who has to process the presented impressions [Bos16].

Also in 1995, the World Wide Web Consortium (W3C), founded the year before, de-

veloped into an operative organization. Many companies joined the consortium and its

influence increased. They organized workshops on a variety of topics, including one

on style sheets. One of the participants of this workshop was Thomas Reardon. He

8

was one of the developers of Microsoft’s Internet Explorer. He ensured the support of

CSS in the upcoming versions of the browser. This was a milestone for style sheets.

W3C established a working group called HTML Editorial Review Board. One of the

goals of this working group was to make CSS a W3C Recommendation, which is equiv-

alent to an area-wide standard. To do this, they had to convince Netscape, the other

major commercial browser provider at the time, to include CSS into its browsers. Oth-

erwise, there would have emerged several browsers which support different specifica-

tions instead of one standard [Bos16].

In December 1996, CSS1 became a W3C Recommendation. In 1997, W3C introduced

a separate working group for CSS to develop features that were not yet implemented

in the first version. In 1998, CSS2 became a W3C Recommendation. The working

group, which consisted of 15 members in 1999, had 115 members in 2016. Their task

is to develop new modules for CSS and also fix errors [Bos16].

2.3 Development Process of CSS

Since the first publication of a CSS specification, the style sheet language has been

further developed. This task has since been taken over by the World Wide Web Con-

sortium. The W3C is the main institution for standardization regarding the World Wide

Web. To understand the development steps of CSS, it is necessary to know the pro-

cess new technology has to go through. To become a W3C Recommendation, a rec-

ommendation-track document must go through three stages. These are intended to

ensure the stability of the technology [AtEt20].

The first stage is called Working Draft (WD). It is the design phase of a new specifica-

tion. The first official working draft is also called First Public Working Draft (FPWD).

For the CSS working group, the publication of the FPWD would mean that the whole

group has agreed to work on a new module. The end of this stage is sometimes called

the Last Call Working Draft (LCWD) phase. At this point, the working group has re-

solved all known errors and cannot make further progress without external feedback

through testing and implementations. It sets a deadline for any pending issues. The

working group must consequently follow up on and address the feedback received. To

9

demonstrate wide review and acceptance, a comment tracking document, the Dispo-

sition of Comments (DoC), is submitted along with an updated draft for the Director’s

approval [AtEt20].

The second stage is called Candidate Recommendation (CR). This phase is all about

testing and implementing the specification. Many issues of the specification are re-

vealed in this phase. Therefore, the Candidate Recommendation often changes at this

stage. To exit the CR, the demonstration of two correct and independent implementa-

tions of each feature is required. The working group generates a test series and imple-

mentation reports. To move to the next stage, the W3C Advisory Committee must con-

firm the transition. This phase is called Proposed Recommendation (PR) [AtEt20].

The last stage is called Recommendation (REC). At this point, the W3C specification

is in a completed state. The working group now only maintains an errata document. It

also publishes updates to the document where errata are reintegrated into the specifi-

cation [AtEt20].

2.4 CSS Levels

Different from other programming and script languages, CSS is not developed in ver-

sions but levels. Each level builds on the previous. Therefore, each higher level is a

superset of any lower level. The behavior allowed for a higher-level feature is a subset

of the allowed behavior in the lower levels. This means that if a higher CSS level is

supported by a user agent, this also applies to the lower levels of this module [AtEt20].

CSS Level 1

The first level of CSS includes all the features of the CSS1 specification but uses the

syntax of the CSS 2.1 specification [AtEt20].

CSS Level 2

When CSS Level 2 was introduced, the working group had not yet defined the Candi-

date Recommendation stage. Therefore, CSS2 became a W3C Recommendation

without going through this stage. This led to more and more errors appearing in the

specification over time. Instead of further expanding the already very comprehensive

10

errata list, the working group decided to publish CSS Level 2 Revision 1 (CSS2.1). If a

conflict arises between the two specifications, CSS 2.1 is considered the final definition

[AtEt20].

After CSS2.1 became a CR, the CSS2 Recommendation became obsolete, although

they were not on the same stability level. Some of the functions in CSS2 were removed

from the CSS2.1 specification and were subsequently reclassified as Candidate Rec-

ommendations. It should be noted that many of these features have been incorporated

into a working draft for CSS Level 3 [AtEt20].

CSS Level 3

The third level of CSS uses the CSS2.1 specification as a basis. The further developed

modules add functionality respectively replace parts of the CSS2.1 specification. Spe-

cial care is taken to ensure that the new CSS modules do not contradict the old spec-

ifications but complement them [AtEt20].

After reaching CSS Level 3, the modules are leveled independently. This means that

for some modules Level 4 can be completed before Level 3 has been completed for

others. Modules start at Level 1, if they have no equivalent in CSS Level 2, or Level 3,

f there is a counterpart [AtEt20].

CSS Level 4 and beyond

CSS considered as a language has no level 4. However, individual modules can reach

level 4 and higher [AtEt20].

3 Operating Principle of CSS

In this chapter, the functional principle of CSS is discussed. First, the basic concept is

explained. Then the box-model of CSS and the syntax are introduced. In addition, the

most important selectors and the possibilities of implementation are presented.

11

3.1 Concept

As mentioned before, CSS is the standard style sheet language for the World Wide

Web. The purpose of Cascading Style Sheets is to define the presentation of websites.

The presentation includes fonts, colors, layout, and the responsiveness on different

screens. However, there are many more possibilities offered by the language

[W3hc21].

One of the key features of CSS was also already mentioned before in chapter 2.2: The

property that the language applies to any XML-based markup language. However, the

use of CSS in conjunction with XML formats that have a Document Type Definition

(DTD) offers the most functionality. Independent of the format, the elements can be

described either in a separate style area of the document or in a separate document

with values and attributes [ACPa21].

Regarding web pages, it makes sense to separate the HTML and the CSS documents.

This makes it easier to maintain them. In addition, the style sheet can be applied to

multiple websites and may be used in other environments, where the same design is

needed. This division is called the separation of structure from the presentation

[W3hc21].

3.2 Box Model

The CSS box model is one of the essential concepts of this style sheet language when

it comes to design and layout. Every HTML or XML element that should be styled with

CSS, gets encased in a box. This box consists of four parts: the content, the padding,

the border, and the margin. (Figure 1) The content is the part of the box, where text

and images to be displayed are located. The padding is a transparent area, that allows

providing spacing around the content. The border surrounds both the content and the

padding. The margin is also a transparent area, that provides spacing around the bor-

der [W3bm21].

12

Figure 1: Box Model [W3bm21]

Especially when it comes to defining the height and width of specific elements, it is

necessary to understand the CSS box model. If the height and width of an element are

specified, this declaration only applies to the content area. To calculate the real size of

the element, the padding, the border, and the margin must be added [W3bm21].

3.3 Syntax

If you look at the syntax of CSS, you will notice that each statement consists of two

parts. The first part is the selector. A selector defines which HTML element should be

styled. The second part is the declaration, which is defined by curly brackets. A decla-

ration consists of one property and one value. The property and the value are sepa-

rated by a colon. A declaration block may consist of more than one declaration. Multiple

declarations in a block are separated by semicolons. In the example in figure 2, the

selector is the h1-tag. The declaration block consists of two declarations. One defines

the font color as blue, the other the font size as 12 pixels [W3sy21].

13

Figure 2: CSS-Syntax [W3sy21]

3.4 Selectors

As mentioned before, the selector “selects” the elements that are meant to be styled.

In general, a distinction is made between five different categories of selectors. These

categories are:

• Simple selectors

• Combinator selectors

• Pseudo-class selectors

• Pseudo-elements selectors

• Attribute selectors

Every selector category has its purpose [W3se21]. Some selectors are examined in

more detail in this chapter.

3.4.1 Simple Selectors

The first category is the simple selectors. There are three basic ways to select the

HTML elements. [W3se21]

With the element selector, all HTML elements with the same tag are addressed

[W3se21]. For example, all elements with the <p> tag are styled according to the same

properties and values (Figure 3).

 Figure 3: Simple Selector Figure 4: ID Selector

14

The id selector and the class selector are following the same principle as the element

selector. The difference is that the elements are selected by the id attribute (Figure 4)

respectively by the class of the HTML elements (Figure 5) [W3se21].

 Figure 5: Class Selector

It is also possible to combine the element selector and the class selector to select only

certain HTML elements with the said class (Figure 6) [W3se21].

The universal selector is used when all elements of the HTML document are to be

given the same properties and values (Figure 7) [W3se21].

Figure 7: Universal Selector

If only certain HTML elements are to be assigned the same style attributes, one way

would be to define the same properties and values for each element individually like in

the example on the left. To minimize the amount of code, it would be better to use the

group selector, like in the example on the right (Figure 8) [W3se21].

Figure 8: Group Selector

Figure 6: Simple and Class Selector combined

15

3.4.2 Combinator Selectors

A CSS selector can consist of more than one simple selector by using a combinator. A

combinator explains the relationship between the selectors. There are four different

types of combinators [W3co21].

The first one is the descendant selector. It selects all elements that are descendants

of a certain element. The simple selectors are combined with a space between them

[W3co21]. In the example in figure 9, all elements inside a <div> element are

selected

 Figure 9: Descendant Selector

The second CSS selector that uses a combinator is the child selector. It uses a greater-

than sign between the selectors, to match only the elements that are children of a

certain element [W3co21]. The code in figure 10 styles all <p> elements that are chil-

dren of a <div> element.

Another combinator selector is the adjacent sibling selector. Adjacent elements are

elements that immediately follow another. Siblings are elements that have the same

parent element. Therefore, this selector is used to select elements that are directly

after another certain element and have the same parent element. The selectors are

combined with a plus [W3co21]. In the example in figure 11 are only <a> elements

selected, which directly follows <div> elements.

 Figure 11: Adjacent Sibling Selector

The last one of the combinator selectors is the general sibling selector. It selects all

elements that are the next siblings of a particular element. The selector is defined with

Figure 10: Child Selector

Figure 12: General Sibling Selector

16

a tilde between the selectors [W3co21]. In the example in figure 12, all <p> elements

are selected, that are next siblings of <div> elements.

3.4.3 Pseudo-Class Selectors

The pseudo-class selector, as the name suggests, applies the defined style specifica-

tions to special CSS pseudo-classes. these classes are there to define the style of

certain states of an element. Use cases include changing the appearance of a button

when the cursor moves over it or changing a link after it has been visited [W3pc21].

The syntax is shown in figure 13.

Figure 13: Pseudo-Class Selector [W3pc21]

3.4.4 Pseudo-Elements Selectors

The pseudo-element selector has similar functionality as the pseudo-class selector.

Pseudo-elements are used to select and style certain parts of an element. They can

be used for example to style the first letter of an element or to insert additional content

before or after the content of an element [W3pe21]. Figure 14 illustrates the syntax.

Figure 14: Pseudo-Element Selector [W3pe21]

3.4.5 Attribute Selectors

The last category of CSS selectors is the attribute selectors. An attribute provides ad-

ditional information about an element and its syntax is usually a name/value pair. Fig-

ure 15 shows an example of a <a> HTML-tag, that defines a hyperlink, whereas ‘href’

is the attribute that defines the URL of the website to which the hyperlink leads

[W3at21].

Figure 15: Defining a Hyperlink in HTML with Attribute ‘href’

17

The attribute selector is used to address elements by their attributes. There are seven

different ways this selector can be used [W3as21].

The simplest attribute selector selects the elements that have the specific attribute

[W3as21]. An example of this selector is shown in figure 16, where all <a> elements

with the attribute ‘href’ have a red font color.

 Figure 16: Selecting a specific Attribute

Another way to select an element by its attribute is to also specify its value [W3as21].

Figure 17 demonstrates how all elements with 'title' as attribute and ‘comment’ as value

are designed in font-size 12 pixels.

With the next selector, it is possible to select elements where a certain word occurs in

the value of the attribute [W3as21]. Figure 18 shows an example of how to style <p>

elements where the value of a ‘title’ attribute contains the word ‘CSS’. The fourth option

resembles the previous selector. The difference is that only a string and not a whole

word must be included in the attribute value (Figure 19) [W3as21].

 Figure 18: Attribute Value contains “CSS”

The next selector offers the possibility to address elements where the value of the

attribute starts with a certain string. This string must be a whole word that either stands

alone or is followed by a hyphen [W3as21]. The syntax is illustrated in figure 20.

Figure 20: Select where Attribute Value starts with "side"

Figure 17: Selecting by Attribute and the Value

Figure 19: Attribute Value contains “Casca”

18

The selector shown in figure 21 is similar to the previous one. But instead of looking

for a whole word at the beginning of an attribute value, the selector matches elements

where the attribute value starts with a string that does not have to be a whole word.

[W3as21]

Figure 21: Select where Value starts with “side”

The last attribute selector follows the same principle as the previous one, with the dif-

ference that it selects elements with attribute values that end with a certain string (Fig-

ure 22) [W3as21].

3.5 Ways to Insert CSS

3.5.1 Insert into HTML

For the defined style specifications to be applied to the HTML document by the

browser, CSS must be inserted into the document. There are three different ways to

do this [W3ad21].

The first possibility is to insert CSS externally. This means, an external style sheet is

used, which contains the CSS statements. This allows the same style sheet to be ap-

plied to several HTML documents, by including a reference to the style sheet inside of

a <link> element inside the HTML header (Figure 23). This makes it possible to change

several web pages by changing only one CSS file. This CSS file should only consist of

CSS statements. It can be written in any text editor and is saved with the ‘.css’ exten-

sion [W3ad21].

Figure 23: Insert CSS external

Figure 22: Select where Value ends with "bar"

19

Another method to insert CSS is, by including the statements inside an <style> element

directly in the header of the HTML document. This approach is called internal CSS. It

is used, if one single webpage must have a unique style compared to the others (Figure

24) [W3ad21].

Figure 24: Insert CSS internal

The last approach is called inline CSS. This method may be used when a single ele-

ment is to be designed uniquely. The CSS statements are inserted directly into the

start tag of the specific element, using the ‘style’ attribute (Figure 25). This type of

insertion should be used sparingly and only in very special cases, as it contradicts the

principle of separation of content and presentation [W3ad21].

Figure 25: Insert CSS inline

It is also possible to apply multiple style sheets to a single HTML document. If the same

element with different properties appears in different style sheets, the style definition

that appears last in the document is applied [W3ad21].

Apart from that, some rules define the order in which styles are applied:

• Inline style

• External and internal style sheets

• Browser default

20

Following these rules, the styles will cascade into a new, virtual style sheet. This

means, the inline style has the highest priority and will override both external and in-

ternal style sheets as well as the browser default settings [W3ad21].

3.5.2 Insert into XML

Due to the use of CSS for the design of web pages and web applications, it is largely

used in conjunction with HTML. Nevertheless, as mentioned before, it is possible to

apply CSS to all sorts of XML documents. However, there are some differences to be

considered.

To understand these differences, the difference between HTML and XML must first be

clarified. The first difference is the fundamental purpose of the two markup languages.

While the task of HTML is to display content, the purpose of XML is to transport and

store data. HTML is a markup language itself and therefore has predefined tags. XML

on the other hand is basically a framework to define markup languages and therefore

the tags can also be defined individually. By naming the XML tags individually, context

and information about the content of the element can be made readable for humans

[JP21], The problem is that the browser does not know the self-defined tags. The cru-

cial difference is that the HTML elements are known to the browser and are already

provided with simple formatting without CSS. The XML tags on the other side cannot

be recognized because they are named individually. This means that more CSS prop-

erties must be taken into account than with HTML documents [ACPb21].

The inclusion of the CSS document in an XML file is similar to HTML. Figure 26 shows

how a CSS file with the name ‘CSSandXML’ is inserted into a XML document. The

insertion of the file must come right after the XML declaration [ACPb21].

Figure 26: Insert CSS external into XML Document

21

4 Example of Use

Now that the basic concept, functionality, and syntax of CSS have been explained in

the previous chapters, this chapter will illustrate practical applications.

4.1 Using CSS Frameworks

When it comes to developing a website or a web application from scratch, the process

may be a very tedious and complex one. Not only does a considerable amount of writ-

ten code accumulates, but this code must also be maintained and adapted while the

website or web application evolves. For this reason, it can make sense to use CSS

frameworks, even for smaller web development projects.

4.1.1 Components and Advantages

Frameworks are prefabricated sets of concepts, modules, and standardized specifica-

tions, which can be reapplied on different projects. Depending on the framework, a lot

of different functions are provided. The use of a framework may reduce the amount of

code noticeably. This can significantly reduce both the overall development time and

the maintenance effort. In addition, the developer is relieved of many basic tasks and

can concentrate on the more project-specific tasks. Basic components are listed and

shortly described in the following section [ShPr18].

• Grids are systems that make it possible to structure the content of the web project

horizontally and vertically. Moreover, they mostly add responsive design based on

the screen or browser window size [ShPr18].

• Typography elements, include all font-related designs, such as font styles, font

colors, but also the alignment of the text.

• Cross-browser compatibility ensures, that all defined CSS statements are also

compatible with the common browsers and are displayed correctly.

• Helper classes for positioning elements are used to avoid code repetition, by

reusing classes that are made only for the purpose to position the elements [Aj14].

22

• Utility classes are self-descriptive classes, made only for one particular purpose.

An example is the class ‘.bg-red’ for a red background [Ba19].

• Navigational elements make it easier to create horizontal or vertical navigation

bars, because of the given basic structure.

• Pre-processors are extended versions of CSS, that offer more functionality and

attack the limitations of CSS. Examples are Syntactically Awesome Style Sheets

(SASS) or ‘Less’. Features of pre-processors are, for example, the possibility to use

functions or to perform calculations [NdMu19].

• Media elements are predefined components like badges, tooltips, or comments

[ShPr18].

Further advantages of frameworks are the ease of modification and expansion, existing

documentation, a clean and consistent code structure [ShPr18].

4.1.2 Popular Frameworks

Bootstrap

The most popular framework in web design is Bootstrap. It applies the mobile-first ap-

proach, which means that the design is first designed for mobile devices. Thereafter,

responsiveness adapts the design to other devices. Bootstrap provides a lot of extras

like SASS variables and functions, a responsive grid system, prebuilt components, and

JavaScript plugins. Due to the number of possibilities of Bootstrap, it is especially suit-

able for large web projects [ShPr18].

Foundation

Foundation was the first framework that enabled responsiveness. Like Bootstrap, it

also follows the mobile-first approach and is similarly equipped. With the help of Foun-

dation, you can customize web pages and apps as well as e-mails with ready-made

components [ShPr18].

Materialize

Materialize is based on the Material Design philosophy of Google. This design lan-

guage was developed by Google to unify the user experience across their products.

Materialize can be used in two different forms. The standard version comes with CSS

and JavaScript files, while the other version also contains SASS source code [ShPr18].

23

The frameworks described above have a very wide range of possibilities, which is why

they are often too extensive and complex for web development beginners or very small

and simple web projects. For this reason, three more lightweight frameworks are de-

scribed below. These frameworks are intended to act as a starting point on which to

build [ShPr18].

UIkit

UIkit is one of these simpler frameworks. Nevertheless, it contains a wide range of

HTML, CSS, and JavaScript components and modules, with a high grade of customi-

zability [ShPr18].

Milligram

Milligram is a very minimalistic framework, that focuses more on performance and high

productivity than on a spectacular user interface. This is also reflected in the size of

the neede files, which is only 2 kb when zipped [ShPr18].

Skeleton

Skeleton is also a very simple framework, consisting of only about 400 lines of code.

Therefore, it only styles a few standard HTML elements. It follows a mobile-based phi-

losophy. Advantages are that no installing or compiling is necessary and that it includes

a grid system [ShPr18].

4.2 Nutshell Examples

In this chapter, some examples of CSS applications will be explained. The correspond-

ing HTML document and the CSS code are attached in the appendix. Primarily, two

concepts are explained to facilitate the arrangement of the various elements, namely

Flexbox and Grid systems. In addition, some other styling features are shown. To sim-

plify the description, the CSS file is divided into six parts: a general section, the navi-

gation bar, the insertion of a picture, arranging elements with Flexbox, arranging ele-

ments with a Grid system, and the footer.

24

4.2.1 General

The first styling definitions apply to the entire document or to elements that occur

repeatedly and should always look the same.

The first step in this example is to import a different font from Google Fonts. This is a

web service of Google, where a huge amount of different fonts in different designs is

provided. It would also be possible to embed the font in the HTML document. In the

CSS file, this has to be the first statement (Figure 27).

Figure 27: Importing a Font

Next, using the universal selector, some properties are specified that should apply to

all elements (Figure 28). The property ‘box-sizing’ defines how elements behave when

the height and width of the elements are specified. By using the value ‘border-box’, all

padding and borders are included when entering height and width and the content field

is reduced in size. The other two statements indicate that no padding or margin should

be applied. In figure 29, the style of the subtitles is defined with a size of 60 pixels and

padding on the top of 80 pixels.

 Figure 28: Universal Selector Figure 29: Sub-Header definition

4.2.2 Navigation Bar

The first big part of the HTML document that has to be styled is the navigation bar. The

header element (Figure 30), is the container of all elements that belong to the

navigation bar at the top. The first three property-value pairs define the arrangement

with Flexbox, which will be explained in detail later in this chapter. The statements

‘position: fixed’ and ‘top: 0’, specify that the navigation bar should be fixed at the top of

the browser window. The statement ‘overflow: hidden’, specifies that the content

should disappear behind the bar when scrolling. The width is set to 100%, which means

25

that the element takes 100% of the width of the parent element. Furthermore, the

height is set to 70 pixels, the left padding is set to 60 pixels and also the background

color is defined.

Figure 30: Container for Navigation Bar Elements

The next declaration styles the ‘Cascading Style Sheets’ text in the navigation bar. It

includes the definition of the font family, the font-weight, and the font size and color.

Furthermore, the element arrangement is again made with Flexbox (Figure 31)

Figure 31: Text in Navigation Bar

To style the first letters of the ‘Cascading Style Sheets’ in a different way, the <p>

elements are spanned with a tag. With the pseudo-element selector ‘first-let-

ter’, the size and color can be adjusted among other things (Figure 32).

Figure 32: Pseudo-Element 'First-Letter’

26

The next declaration defines the style of the and <a> elements inside of elements

with the class ‘.nav-links’. Besides the font properties described above, 'text-decora-

tion: none' defines that hyperlinks should not be underlined. In addition, 'list-style:

none" removes the bullets of the list elements. By using the declaration 'display: inline’

the elements are arranged side by side (Figure 33).

Figure 33: Hyperlink-Elements in Navigation Bar

The declaration block in figure 34 specifies how the hyperlink elements in the naviga-

tion bar change when the cursor hovers over them. The background and font color

change. With the property 'border-radius' the corners of the border are rounded. The

‘transition-duration’ property is used to define the time it takes to change from one

defined state to another.

Figure 34: Hover over Hyperlink-Elements in navigation Bar

Figure 35 shows the styled navigation bar, with the cursor over the ‘EXAMPLES’ hy-

perlink.

Figure 35: Finished Navigation Bar

27

4.2.3 Picture

Now an image should be inserted directly after the navigation bar that runs across the

entire browser window. One possible way would be to embed the picture in the HTML

document. Since in this example a text is to be placed in the image, this variant is

difficult to implement without first inserting the text into the original image. Therefore in

the HTML document first an element with the class 'cont-top-pic' was created, in which

an element with the class 'top-pic-text' is located, which contains the text. The

declaration block for the container element contains again definitions for the

arrangement of the child elements, using ‘display: flex’ and ‘align-items’ as well as

‘justify-content’ (see chapter 4.2.4). Furthermore, the top margin and the height of the

element are set. Now to insert the picture as the background of the container element,

the ‘background-image’ property with the URL of the picture as value is used. With

‘background-position’, the part of the image to be shown is selected (Figure 36).

Figure 36: Container with Background Picture

After that, only the element containing the text has to be styled (Figure 37).

Figure 37: Text in Picture

Figure 38 shows the inserted picture and text, that are positioned between the naviga-

tion bar and the main content.

28

Figure 38: Text with Picture as Background

4.2.4 Flexbox

We continue with the next section of the CSS file, where the content of the HTML

document is arranged using the Flexbox layout module. Flexbox is made for one-

dimensional layout. This means it only can work on either columns or rows at the same

time. It is designed for small-scaled layouts.

To use flexbox, first, a so-called ‘flex-container’ must be created, which contains the

content that should be arranged. With the declaration 'display: flex', an element is

defined as such a container. The justify-content property controls the horizontal

alignment, while the align-content property controls the vertical alignment of the

content. In this example are three columns to arrange. With the value ‘space-between’

of the justify-content property, the space between the elements is divided equally

(Figure 39). Other possible values are ‘flex-start’, ‘flex-end’, ‘center’, or ‘space-around’.

Figure 39: Flex-Container

With an attribute selector, every element that starts with the string ‘column’ is styled

like in figure 40. These are the elements that contain the content. Since the texts to be

displayed are of different lengths, the height is set to 570 pixels so that the columns

displayed have the same size.

29

Figure 40: Textboxes in the Flex-Container

Since the text would now be displayed beyond the defined textbox, another element

with the class 'pad' is spanned around the actual content. This element is set to a

height of 470 pixels, to generate space between the textbox and the text itself. In

addition, the overflowing text is hidden. Since the entire text is no longer readable, the

pseudo-class selector 'hover' with the declaration 'overflow-y: scroll' determines that

the element containing the text is provided with a scroll bar as soon as the cursor

hovers over the element (Figure 41).

Figure 41: Text-Container and Hover-Effect

The following declaration blocks are defining the overall style of the content in the text

boxes. First, the heading is styled by changing the default font family, color and size.

Also, the heading is centered in the middle of the text box. Next, also a different size

and font family are defined. Furthermore, the text alignment is set to justification. Lastly,

the first letter of the three texts is given a different size and color, as well as being

displayed in bold (Figure 42).

30

Figure 42: General Styling of the Text

Because the displayed scrollbar does not match the overall design concept of the doc-

ument, it is styled with the next declaration blocks. First, the general width of the scroll-

bar is set to 12 pixels. Second, the scrollbar track gets a different background and

rounded corners. Finally, the scrollbar thump is given a different color and the same

rounded corners as the scrollbar track (Figure 43).

Figure 43: Styling the Navigation Bar

31

The ‘::-webkit-scrollbar’ pseudo-element is no standard element. Therefore, it is not

supported by every browser. However, among the most used browsers like Chrome,

Safari, Opera, etc., only Firefox and older versions of Edge are not supporting this

pseudo-element.

Figure 44 shows the content aligned with flexbox. The cursor hovers over the left text-

box so that the scrollbar for the invisible text can also be seen. It can also be seen that

the navigation bar is still visible even though the page is scrolled down.

Figure 44: Content that is arranged by using Flexbox

4.2.5 Grid

Besides the Flexbox module, another layout module is used in this example, which is

called Grid. Unlike Flexbox, the Grid is a two-dimensional system. This means that

both, columns and rows, can be worked on at the same time. Another difference to

flexbox is that the grid is less focused on content and more on the overall layout of, for

example, a website. Therefore it is designed for large-scale layouts.

The first step, similar to the Flexbox module, is to define a grid container by using the

declaration ‘display: grid’. With the ‘grid’ property and the corresponding values, a grid

system is defined, which consists of two rows with a height of 150 pixels and three

columns whose width is automatically defined. The properties ‘grid-row-gap’ and ‘grid-

32

column-gap’, are setting the spaces between the grid-items. Also, a margin of 60 pixels

and a padding of 20 pixels on the top and the bottom is defined (Figure 45).

Figure 45: Grid-Container

To align the contents of the grid items, they are defined as Flexbox-containers. The

child elements of the grid items should be centered both horizontally and vertically

(Figure 46).

Figure 46: Grid Items

The last declaration blocks are again used for styling the content. The <p> elements

that are contained in the grid elements get a different color, font family, and font size.

Additionally, they are displayed in justification. The pictures which are embedded in

the grid items should have a width of 100 pixels. Finally, a border is defined with an

element that is spanned around the entire grid section (Figure 47).

Figure 47: Content in the Grid Section

33

Figure 48 shows the content that was arranged using a grid system and the footer. The

grid system consists of three columns with two rows. The first row contains the logos

and the second row some text. With the grid, the content can be arranged very easily.

Figure 48: Content arranged with a Grid-System and Footer

4.2.6 Footer

The last to be styled part of the HTML document is the footer. It is basically the same

as the navigation bar, but more minimalistic (Figure 49).

Figure 49: Footer Style Declarations

5 Summary and Outlook

CSS has evolved tremendously over the last 25 years. From being only a proposal for

a standard style sheet language to becoming the standard for styling websites on the

34

World Wide Web. It should be emphasized that CSS can be applied not only to HTML

but to all XML-based documents.

Despite the relatively simple syntax and the easy-to-understand box-model, CSS can

be quite overwhelming because of the huge number of properties and values that are

available. This is mainly due to the constant further development. Furthermore, keep-

ing the CSS code neat and compact is challenging, especially for beginners.

CSS frameworks are one way to shorten the code by using predefined elements and

classes. Nevertheless, beginners shouldn’t rely only on frameworks. However, for

large web projects, these can be very useful and, at a certain level, necessary.

The further development of the individual modules takes place independently of each

other. This leads to the fact that since CSS Level 3 no new versions of CSS as a whole

are released. Individual modules may therefore be more advanced than others.

CSS is already a very rich style sheet language and with the development of pre-pro-

cessors like SASS, even more, functionality is added. Therefore, even 25 years after

its introduction, the development of CSS is far from complete.

35

References

[ACPa21] CSS (Cascading Style Sheets) lernen. (n.d.). a coding project.

from https://www.a-coding-project.de/ratgeber/css

Retrieved 22 October 2021

[ACPb21] XML gestalten mit CSS. (n.d.). a coding project.

from https://www.a-coding-project.de/ratgeber/xml/gestalten-mit-css.

Retrieved 23 October 2021

[Aj14] Ajmi, A. (2018, October 4). Using Helper Classes to DRY and Scale CSS.

SitePoint.

from https://www.sitepoint.com/using-helper-classes-dry-scale-css/

Retrieved 15 November 2021

[AtEt20] Atkins Jr., T., Etemad, E. J., & Rivoal, F. (2020, December 22). CSS Snap-

shot 2020. World Wide Web Consortium (W3C).

from https://www.w3.org/TR/CSS/#css-levels.

Retrieved 21 October 2021

[Ba19] Barker, M. (2019, January 28). A Year of Utility Classes. CSS In Real Life.

from https://css-irl.info/a-year-of-utility-classes/.

Retrieved 15. November 2021

[Bloo17] Bloom, Z. (2018, August 29). The Languages Which Almost Became CSS.

The Cloudflare Blog.

from https://blog.cloudflare.com/the-languages-which-almost-became-css/.

Retrieved 20 October 2021

[Bos16] Bos, B. (2017, June 16). 20 Years of CSS. World Wide Web Consortium

(W3C)

from https://www.w3.org/Style/CSS20/.

Retrieved 20 October 2021

[JaLe97] Raggett, D., le Hors, A., & Jacobs, I. (1997, July 8). A brief SGML tutorial.

World Wide Web Consortium (W3C).

from https://www.w3.org/TR/WD-html40-970708/intro/sgmltut.html. Re-

trieved 20 October 2021

[JP21] HTML vs XML. (n.d.). Javatpoint.

from https://www.javatpoint.com/html-vs-xml.

Retrieved 23 October 2021

[NdMu19] Ndia, J. G., Muketha, G. M., & Omieno, K. K. (2019). A SURVEY OF CAS-

CADING STYLE SHEETS COMPLEXITY METRICS. International Journal

of Software Engineering & Applications, 10(03), 21–33.

https://www.a-coding-project.de/ratgeber/css
https://www.w3.org/TR/CSS/#css-levels
https://css-irl.info/a-year-of-utility-classes/
https://blog.cloudflare.com/the-languages-which-almost-became-css/
https://www.w3.org/Style/CSS20/
https://www.w3.org/TR/WD-html40-970708/intro/sgmltut.html
https://www.javatpoint.com/html-vs-xml

36

[ShPr18] Shenoy, A., & Prabhu, A. (2018). CSS Framework Alternatives: Explore

Five Lightweight Alternatives to Bootstrap and Foundation with Project Ex-

amples (1st ed.). Apress.

[W3ad21] How to add CSS. (n.d.). W3C Schools.

from https://www.w3schools.com/Css/css_howto.asp.

Retrieved 23 October 2021

[W3as21] CSS Attribute Selector. (n.d.). W3C Schools.

from https://www.w3schools.com/Css/css_attribute_selectors.asp.

Retrieved 22 October 2021

[W3at21] HTML Attributes. (n.d.). W3C Schools.

from https://www.w3schools.com/htmL/html_attributes.asp.

Retrieved 22 October 2021

[W3bm21] CSS Box Model. (n.d.). W3C Schools.

from https://www.w3schools.com/css/css_boxmodel.asp.

Retrieved 22 October 2021

[W3co21] CSS Combinators. (n.d.). W3C Schools.

from https://www.w3schools.com/Css/css_combinators.asp.

Retrieved 22 October 2021

[W3hc21] HTML & CSS (2016). World Wide Web Consortium (W3C).

from https://www.w3.org/standards/webdesign/htmlcss.

Retrieved 21 October 2021

[W3pc21] CSS Pseudo-classes. (n.d.). W3C Schools.

from https://www.w3schools.com/Css/css_pseudo_classes.asp.

Retrieved 22 October 2021

[W3pe21] CSS Pseudo-elements. (n.d.). W3C Schools.

from https://www.w3schools.com/Css/css_pseudo_elements.asp.

Retrieved 22 October 2021

[W3se21] CSS Selectors. (n.d.). W3C Schools.

from https://www.w3schools.com/Css/css_selectors.asp.

Retrieved 22 October 2021

[W3sy21] CSS Syntax. (n.d.). W3C Schools.

from https://www.w3schools.com/Css/css_syntax.asp.

Retrieved 22 October 2021

https://www.w3schools.com/Css/css_attribute_selectors.asp
https://www.w3schools.com/htmL/html_attributes.asp
https://www.w3schools.com/Css/css_syntax.asp

37

List of Figures

Figure 1: Box Model [W3bm21] .. 12

Figure 2: CSS-Syntax [W3sy21] ... 13

Figure 3: Simple Selector ... 13

Figure 4: ID Selector ... 13

Figure 5: Class Selector ... 14

Figure 6: Simple and Class Selector combined .. 14

Figure 7: Universal Selector ... 14

Figure 8: Group Selector .. 14

Figure 9: Descendant Selector ... 15

Figure 10: Child Selector .. 15

Figure 11: Adjacent Sibling Selector ... 15

Figure 12:General Sibling Selector ... 15

Figure 13: Pseudo-Class Selector [W3pc21] .. 16

Figure 14: Pseudo-Element Selector [W3pe21] .. 16

Figure 15: Defining a Hyperlink in HTML with Attribute ‘href’ 16

Figure 16: Selecting a specific Attribute ... 17

Figure 17: Selecting by Attribute and the Value .. 17

Figure 18: Attribute Value contains “CSS” .. 17

Figure 19: Attribute Value contains “Casca” ... 17

Figure 20: Select where Attribute Value starts with "side" .. 17

Figure 21: Select where Value starts with “side” ... 18

Figure 22: Select where Value ends with "bar" ... 18

Figure 23: Insert CSS external ... 18

Figure 24: Insert CSS internal .. 19

Figure 25: Insert CSS inline .. 19

Figure 26: Insert CSS external into XML Document ... 20

Figure 27: Importing a Font .. 24

Figure 28: Universal Selector Figure 29: Sub-Header definition............................. 24

Figure 30: Container for Navigation Bar Elements ... 25

Figure 31: Text in Navigation Bar ... 25

Figure 32: Pseudo-Element 'First-Letter’ .. 25

Figure 33: Hyperlink-Elements in Navigation Bar ... 26

file:///C:/Users/Oliver/Desktop/Uni/3.%20Haupstudium/SBW%20Business%20Information%20Systems/K5%20Seminar/ABGABE%20Arbeit+Präsentation/CSS-Cascading%20Style%20Sheets.docx%23_Toc90502707
file:///C:/Users/Oliver/Desktop/Uni/3.%20Haupstudium/SBW%20Business%20Information%20Systems/K5%20Seminar/ABGABE%20Arbeit+Präsentation/CSS-Cascading%20Style%20Sheets.docx%23_Toc90502709
file:///C:/Users/Oliver/Desktop/Uni/3.%20Haupstudium/SBW%20Business%20Information%20Systems/K5%20Seminar/ABGABE%20Arbeit+Präsentation/CSS-Cascading%20Style%20Sheets.docx%23_Toc90502713
file:///C:/Users/Oliver/Desktop/Uni/3.%20Haupstudium/SBW%20Business%20Information%20Systems/K5%20Seminar/ABGABE%20Arbeit+Präsentation/CSS-Cascading%20Style%20Sheets.docx%23_Toc90502715
file:///C:/Users/Oliver/Desktop/Uni/3.%20Haupstudium/SBW%20Business%20Information%20Systems/K5%20Seminar/ABGABE%20Arbeit+Präsentation/CSS-Cascading%20Style%20Sheets.docx%23_Toc90502720
file:///C:/Users/Oliver/Desktop/Uni/3.%20Haupstudium/SBW%20Business%20Information%20Systems/K5%20Seminar/ABGABE%20Arbeit+Präsentation/CSS-Cascading%20Style%20Sheets.docx%23_Toc90502722
file:///C:/Users/Oliver/Desktop/Uni/3.%20Haupstudium/SBW%20Business%20Information%20Systems/K5%20Seminar/ABGABE%20Arbeit+Präsentation/CSS-Cascading%20Style%20Sheets.docx%23_Toc90502725

38

Figure 34: Hover over Hyperlink-Elements in navigation Bar 26

Figure 35: Finished Navigation Bar .. 26

Figure 36: Container with Background Picture ... 27

Figure 37: Text in Picture.. 27

Figure 38: Text with Picture as Background ... 28

Figure 39: Flex-Container ... 28

Figure 40: Textboxes in the Flex-Container .. 29

Figure 41: Text-Container and Hover-Effect ... 29

Figure 42: General Styling of the Text .. 30

Figure 43: Styling the Navigation Bar ... 30

Figure 44: Content that is arranged by using Flexbox .. 31

Figure 45: Grid-Container ... 32

Figure 46: Grid Items .. 32

Figure 47: Content in the Grid Section ... 32

Figure 48: Content arranged with a Grid-System and Footer 33

Figure 49: Footer Style Declarations .. 33

39

Appendix

HTML-Script

1. <!DOCTYPE html>

2. <html lang="de">

3. <head>

4. <meta charset="utf-8">

5. <meta name="viewpoint" content="width=device-width, initial-

scale=1.0">

6. <link rel="stylesheet" type="text/css" href="style.css" />

7. <title>Cascading Style Sheets</title>

8. </head>

9.

10. <body>

11. <!------------------------------NAVBAR-----------------------------

>

12. <header>

13. <div class="head-text">

14. <p>Cascading</p>

15. <p>Style</p>

16. <p>Sheets</p>

17. </div>

18. <nav>

19. <ul class="nav-links">

20. HOME

21. NEWS

22. SYNTAX

23. EXAMPLES

24. CONTACT

25.

26. </nav>

27. </header>

28. <!---------------------------MAIN CONTENT---------------------------->

29. <div class="main">

30.

31. <!--Picture at the top--->

32. <div class="cont-top-pic">

33. <p class="top-pic-text">Welcome to the World of CSS!</p>

34. </div>

35.

36. <!-------Sub title--------->

37. <h1 class="sub-title">FLEX-BOX</h1>

38.

39. <!--Inserting three rows of text--->

40. <div class="flex-cont-text">

41. <div class="row-1">

40

42. <h1>History</h1>

43. <div class="pad">

44.

45. <p class="text-1">

46. After the publishing of Cascading HTML Style

Sheets by Håkon Wium Lie, Bert Bos responded to

this proposal. Bos was working on a highly cus-

tomizable browser at the time and decided to

team up with Lie to work together on the style

sheet language. With Bos' contribution, the

style sheet language changed so that it was no

longer only designed for HTML but was also com-

patible with other common markup languages.

Therefore, Cascading HTML Style Sheets was re-

named Cascading Style Sheets.

47. </p>

48.

49. <p class="text-1">

50. In November 1994, the first proposal of CSS was

presented at the Web conference in Chicago. The

proposal faced some opposition as many experts

felt it was too simple to meet the require-

ments.

51. </p>

52.

53. <p class="text-1">

54. In addition to CSS, there were about 10 other

style sheet languages that were proposed at

this time. DSSSL for example was one of them.

The feature that distinguished CSS from all the

other proposals was the approach, that the

user, the author, and the technical possibili-

ties of the display devices and the browser

should all influence the design.

55. </p>

56.

57. <p class="text-1">

58. The balance between the influence of users and

authors on the presentation of web pages trig-

gered a fundamental discussion at the next web

conference in 1995. Web developers felt they

should have the power to decide how the docu-

ment is ultimately presented. Lie and Bos ar-

gued that the user should have the last word,

as he is the one who has to process the impres-

sions presented.

59. </p>

60.

61. <p class="text-1">

41

62. Also in 1995, the world wide web consortium

(W3C), founded the year before, developed into

an operative organisation. Many companies

joined the consortium and its influence in-

creased. They organised workshops on a variety

of topics, including one on style sheets. One

of the participants of this workshop was Thomas

Reardon. He was one of the developers of Mi-

crosoft’s Internet Explorer. He ensured the

support of CSS…

63. </p>

64.

65. <p class="text-1">

66. In December 1996, CSS1 became a W3C Recommenda-

tion. In 1997, W3C intro-duced a separate work-

ing group for CSS to develop features for that

were not yet implemented in the first version.

In 1998, CSS2 became a W3C Recommendation. The

working group, which consisted of 15 members in

1999, had 115 members in 2016. Their task is it

to develop new modules for CSS and also fix er-

rors

67. </p>

68.

69. </div>

70. </div>

71. <div class="row-2">

72. <h1>Concept</h1>

73. <div class="pad">

74. <p class="text-2">

75. As mentioned before, CSS is the standard style

sheet language for the World Wide Web. The pur-

pose of Cascading Style Sheets is to define the

presentation of Web-sites. The presentation in-

cludes, fonts, colours, the layout, the respon-

siveness on different screens. However, there

are many more possibilities offered by the lan-

guage.

76. </p>

77.

78. <p class="text-2">

79. One of the key features of CSS was also already

mentioned before in chapter 2.2: The property

that the language is applicable to any XML-

based markup language. The concept is based on

the fact that elements are defined by a Docu-

ment Type Definition (DTD), for example with

HTML-tags. These elements can then be…

80. </p>

81. </div>

42

82. </div>

83. <div class="row-3">

84. <h1>XML</h1>

85. <div class="pad">

86. <p class="text-3">

87. Due to the use of CSS for the design of web

pages and web applications, it is largely used

in conjunction with HTML. Nevertheless, as men-

tioned before, it is possible to apply CSS to

all sorts of XML documents. However, there are

some differences to be considered.

88. </p>

89.

90. <p class="text-3">

91. In order to understand these differences, the

difference between HTML and XML must first be

clarified. The first difference is the funda-

mental purpose of the two markup languages.

While the task of HTML is to display content,

the purpose of XML is to…

92. </p>

93. </div>

94. </div>

95. </div>

96.

97. <h1 class="sub-title">GRID</h1>

98. <div class="border-grid">

99.

100. <!---------------GRID------------------------->

101.

102. <div class="grid-container">

103. <div class="grid-item-1">

104. <img class="logo" src="Pictures/css.png"

alt="">

105. </div>

106.

107. <div class="grid-item-2">

108. <img class="logo" src="Pictures/html.png"

alt="">

109. </div>

110.

111. <div class="grid-item-3">

112. <img class="logo" src="Pictures/JS.png"

alt="">

113. </div>

114.

115. <div class="grid-item-4">

116. <p>

43

117. Cascading Style Sheets (CSS) is a style

sheet language used for describing the

presentation of documents

118. </p>

119. </div>

120.

121. <div class="grid-item-5">

122. <p>

123. The HyperText Markup Language, or HTML is

the standard markup language for docu-

ments designed to be displayed in a web

browser.

124. </p>

125. </div>

126.

127. <div class="grid-item-6">

128. <p>

129. JavaScript often abbreviated as JS, is a

programming language that conforms to the

ECMAScript specification.

130. </p>

131. </div>

132. </div>

133. </div>

134. </div>

135.

136. <footer>

137. <p>Impressum</p>

138. </footer>

139. </body>

44

CSS-Code

@import url('https://fonts.googleapis.com/css2?family=Archivo:wght@900&dis-

play=swap');

*{

 box-sizing:border-box;

 margin:0;

 padding:0;}

/*--------------------HEADER-------------------------*/

header{

 display: flex;

 justify-content:space-between;

 align-items:center;

 overflow:hidden;

 position: fixed;

 top:0;

 width:100%;

 padding-left:60px;

 background:rgb(74, 132, 155);

 height:70px;}

div.head-text{

 font-family:"Archivo", sans-serif;

 font-weight: 900;

 font-size:30px;

 color: white;

 display:flex;

 justify-content: flex-start;}

div.head-text p::first-letter{

 color:rgb(152, 205, 255);

 font-size: 40px;}

.nav-links li, a{

 font-family:Arial, Helvetica, sans-serif;

 font-weight: bold;

 font-size:20px;

 color: white;

 text-decoration: none;

 list-style: none;

 display:inline;

 padding: 0px 10px;}

45

.nav-links li a:hover{

 color: rgb(152, 205, 255);

 background-color: rgb(0, 46, 59);

 border-radius: 10mm;

 padding:15px;

 transition-duration: 0.8s;}

/*------------------------CONTENT---------------------*/

/*Picture*/

.cont-top-pic{

 margin-top: 70px;

 height:500px;

 background-image:url(Pictures/code.jpg);

 background-position: center left;

 display:flex;

 align-items: center;

 justify-content: center;}

.top-pic-text{

 background:none;

 font-size:100px;

 color:rgb(1, 35, 131);

 margin:0;

 font-weight: 900;

 font-family: 'Archivo', sans-serif;}

/*--------------Sub Header----------------*/

.sub-title{

 font-size: 60px;

 padding-top:80px;}

/*---------------FLEX-BOX-------------*/

/*Flex Container*/

.flex-cont-text{

 display: flex;

 justify-content: space-between;

 margin-top:50px;

 margin-left:50px;

 margin-right:50px;}

46

/*Container for rows*/

[class|="row"]{

 background:white;

 border:5px solid rgb(152, 205, 255);

 margin:10px;

 width:400px;

 padding:20px;

 height:570px;}

/*Padding for scrollable text*/

.pad{

 height:470px;

 overflow-y: hidden;}

.pad:hover{

 overflow-y: scroll;}

h1{

 font-family: Arial, Helvetica, sans-serif;

 color:rgb(74, 132, 155);

 font-size: 40px;

 text-align: center;}

p[class|="text"]{

 font-size: 18px;

 font-family: Arial, Helvetica, sans-serif;

 text-align: justify;

 padding:15px;

 padding-top: 0;}

.pad::first-letter{

 color:rgb(74, 132, 155);

 font-size:22px;

 font-weight: bold;}

/*Scrollbar design*/

.pad::-webkit-scrollbar {

 width: 12px; } /* width of the entire scrollbar */

.pad::-webkit-scrollbar-track {

 background: rgb(74, 132, 155); /* color of the tracking area */

 border-radius: 20px;}

.pad::-webkit-scrollbar-thumb {

 background-color: rgb(152, 205, 255); /* color of the scroll thumb */

 border-radius: 20px; /* roundness of the scroll thumb */

 border: 3px solid rgb(152, 205, 255);} /* creates padding around scroll

thumb */

47

/*-------------GRID----------*/

.grid-container{

 display:grid;

 grid: 150px 150px/auto auto auto;

 grid-row-gap: 10px;

 grid-column-gap: 55px;

 margin: 60px;

 padding-top:20px;

 padding-bottom:20px;}

[class|="grid-item"]{

 display:flex;

 justify-content: center;

 align-items:center;}

[class|="grid-item"] p{

 color:rgb(74, 132, 155);

 font-family: Arial, Helvetica, sans-serif;

 font-size: 20px;

 text-align:justify;}

img.logo{

 width:100px;}

.border-grid{

 border:rgb(152, 205, 255) 3px solid;

 margin:3px;}

/*----------------------------FOOTER----------------------------------*/

footer{

 height:35px;

 background:rgb(74, 132, 155);

 color:white;

 margin-top:100px;

 display:flex;

 justify-content: center;

 align-items:center;

 font-family: Arial, Helvetica, sans-serif;}

