

 Seminararbeit

Python: Apache Tomcat

Cookbook

(Nutshell Examples)

 Verfasser: Luka Benzia

 Matrikel-Nr.: 11778695

 Studienrichtung: Wirtschaftsinformatik

 Kurs: 4152 Seminar aus BIS

 Textsprache: Englisch

 Betreuer: Prof. Mag. Dr. Rony G. Flatscher

 Unternehmen: Wirtschaftsuniversität Wien

Wien , 01.06.2021

1

Declaration of Authorship

I assure:

• To have individually written, to not have used any other sources or tools than

referenced and to have used any other unauthorized tools for the writing of this

seminar paper.

• To never have submitted this seminar paper topic to an advisor neither in this, nor in

any foreign country.

• That this seminar paper matches the seminar paper reviewed by the advisor.

Date: June 01st, 2021

Signature Luka Benzia:

2

Abstract

Apache Tomcat has become one of the most important open source web servers on the

market. One of the strengths of Apache Tomcat is its compatibility with the Java programming

language, which has become one of the leading languages in the IT sector in recent years.

Besides Java, there are of course many other programming languages, including Python which

is now one of the most popular programming languages in the world, used by many people

every day. The seminar paper brings these two worlds together and makes it possible to use

Apache Tomcat with Python. After a theoretical introduction on the relevant topics, various

small nutshell examples are presented to demonstrate the possibilities of Apache tomcat in

connection with Python. The nutshell examples are some Java Servlets which will be written

in Python. The seminar paper concludes with a short summary of the most important findings

as well as an outlook with a focus on further research possibilities regarding this specific topic.

3

Table of Contents

1 Introduction .. 6

1.1 Objective .. 6

1.2 Methodology ... 6

1.3 Structure .. 7

2 Background ... 8

2.1 Apache Tomcat .. 8

2.1.1 History .. 8

2.1.2 Description ... 8

2.1.3 Open Source ... 9

2.1.4 Lightweight Application .. 9

2.1.5 Stability ... 9

2.1.6 Documentation ... 9

2.2 Python .. 10

2.2.1 History .. 10

2.2.2 Description ... 10

2.2.3 Difference to Java ... 11

2.3 Jython... 11

2.3.1 History .. 11

2.3.2 Description ... 12

2.3.3 Usage .. 12

3 Nutshell Examples .. 13

3.1 Nutshell context... 13

4

3.2 Precautions .. 13

3.3 Python Servlet Nutshell Examples ... 13

3.3.1 Hello world ... 13

3.3.2 Request Info ... 15

3.3.3 Request Header .. 18

3.3.4 Request Parameter ... 20

3.3.5 Cookies ... 24

4 Conclusion .. 30

4.1 Summary .. 30

4.2 Outlook .. 30

Bibliography .. 32

Appendix ... 33

Installation Guide ... 33

Step 1: Download prerequisite Software ... 33

Step 2: Create directories and files .. 34

Step 3: Test the server.. 38

5

List of Figures

Figure 1: Google Trends: Python vs. Java ... 11

Figure 2: HelloWorld Servlet Code ... 14

Figure 3: HelloWorld Servlet output .. 15

Figure 4: RequestInfo Servlet Code .. 16

Figure 5: RequestInfo Servlet output ... 17

Figure 6: RequestHeader Servlet Code .. 18

Figure 7: RequestHeader Servlet output .. 19

Figure 8: RequestParam Servlet code .. 21

Figure 9: RequestParam Servlet output without data ... 23

Figure 10: RequestParam Servlet output with data ... 24

Figure 11: Cookies Servlet code ... 25

Figure 12: Cookies Servlet output without cookies ... 27

Figure 13: Cookie Plug-In without cookies ... 27

Figure 14: Cookie Servlet output with cookies .. 28

Figure 15: Cookies Plug-In with cookies ... 29

Figure 16: Apache Tomcat Download .. 34

Figure 17: ApacheTomcatProjekt directory in Windows (C:) ... 34

Figure 18: Apache Tomcat unpacked ... 35

Figure 19: webapps directory ... 35

Figure 20: JythonTemplate directory ... 36

Figure 21: WEB-INF and META-INF directory ... 36

Figure 22: lib directory ... 37

Figure 23: jython-standalone-2.7.2.jar ... 37

Figure 24: web.xml content ... 38

Figure 25: WEB-INF directory with web.xml file .. 38

Figure 26: jythonTemplate.py content ... 39

Figure 27: jythonTemplate.py path .. 39

Figure 28: Apache Tomcat Server startup .. 40

Figure 29: Java Window for Server start .. 40

Figure 30: Tomcat Servlet Test ... 41

6

1 Introduction

The seminar paper deals with the implementation of Python code in Apache Tomcat web

server. This is made possible by the use of Jython, an implementation of the Python

programming language created to run on Java platforms. The theoretical background covers

the relevant topics of the seminar paper and gives a deeper insight into how Apache Tomcat

and Python work. The functionality of Jython is also explained in this paper and how it is

possible to integrate Python into Java concepts with the help of Jython .It is possible to run

Java Servlets in Apache Tomcat to automate processes of the web server. With the use of

simple Nutshell examples, these Java servlets are taken up and rewritten in the Python

programming language with the help of Jython. Based on these nutshell examples, the

advantages and disadvantages between these two programming languages are shown in the

following. The seminar paper concludes with a short summary of the most important findings

as well as an outlook with a focus on further research possibilities regarding this specific topic.

A detailed installation guide can be found at the end of the seminar paper, in the Appendix

1.1 Objective

The objective of this seminar paper is the integration of the programming language Python

into the Apache Tomcat web servers so it is possible to write Python Servlets which will work

exactly like the Java Servlets in Apache Tomcat. These Servlets will consequently be present

as Nutshell Examples. Furthermore another goal is to create a detailed installation guide to

make it easy for anyone to try out the Nutshell Examples themselves.

1.2 Methodology

The seminar paper starts with a theoretical part explaining the fundamental elements of the

required software. A series of nutshell examples are then provided using pieces of code and

images of the Servlet outcome. In addition, there is a detailed installation guide in the

7

Appendix, which includes every step of the installation in detail with the help of download

links and pictures.

1.3 Structure

The seminar paper consists of 4 sections. The first section contains the theoretical part,

explaining the fundamental knowledge of the required software. The second section contains

the practical part, where different Nutshell examples are explained in detail and presented

together with code lines and pictures. The third section provides a brief summary of the

outcomes and an outlook on further research within this topic. The fourth and last section

offers a detailed installation guide.

8

2 Background

In this chapter the theoretical Background of the seminar paper will be covered. The first point

is an introduction and explanation of the web server Apache Tomcat together with the

historical background of this web server. Next the programming language Python and its

historical background will be explained. Third, the theoretical background of Jython will be

covered. Lastly, an overview of the Servlets and the HTML language which is used in the

servlets will be given.

2.1 Apache Tomcat

2.1.1 History

Originally, the development of Apache Tomcat started as a project by James Duncan Davidson

at Sun Microsystems. It started as reference implementation for the Java Servlet and Java

Server Pages specifications. In 1999, Sun Microsystems transferred the Tomcat code base to

the Apache Software Foundation, a volunteer organisation that promotes Apache software

projects. They continued the project as an Open-Source-Project under the umbrella of their

Top-Level-Project Jakarta. Due to its great success, it finally became an Apache top-level

project on it’s own in 2005 and has had its own management structure ever since. (OREILLY,

2021)

2.1.2 Description

“Apache Tomcat is an application server designed to execute Java servlets and render web

pages that use Java Server page coding. It’ definitely one of the more popular servlet

containers available.“(Davis, 2014)

“The Apache Tomcat® software is an open source implementation of the Jakarta Servlet,

Jakarta Server Pages, Jakarta Expression Language, Jakarta WebSocket, Jakarta Annotations

9

and Jakarta Authentication specifications. These specifications are part of the Jakarta EE

platform.” (The Apache Software Foundation, 2014)

2.1.3 Open Source

Apache Tomcat is open source software, it is free for everyone to use and the source code can

be downloaded by anyone who is interested. This gives the user complete freedom over his

web server and he can change and customise everything to his liking. (Davis, 2014)

2.1.4 Lightweight Application

Tomcat is a very lightweight application which means it offers the most basic functions for a

server. This means that there are almost no loading times and the redeploy time is much faster

than other applications of this type. “This lightweight nature also allows it to enjoy a

significantly faster development cycle.” (Davis, 2014)

2.1.5 Stability

Another reason to use Apache Tomcat is the stability of the platform, which comes from the

fact that Tomcat runs independently of the Apache installation. This means that even a major

error in Tomcat that stops the application does not cause the server to crash and it continues

to run just fine. (Davis, 2014)

2.1.6 Documentation

The application is very well documented on the official web page and there are many tutorials

on the internet on how to use the application and how to create the first web application.

(Davis, 2014)

10

2.2 Python

2.2.1 History

The work on the programming language Python began at the end of 1980. A short time later

Guido Van Rossum, the Founder of Python, began doing its application based work in

December of 1989 by at Centrum Wiskunde & Informatica (CWI). The Python programming

language started as a successor to ABC programming language, which has the interfacing with

the Amoeba Operating System and has the feature of excepting handling. Van Rossum did

already take part at the ABC project earlier in his career. He used the syntax of ABC, some of

the best features and fixed some issues of the language. Van was the lead developer until 12

July 2018 when he announced his permanent vacation from his responsibilities of the python

language. Python was finally released in 1991 and it used a lot fewer codes to express the

concepts compared to Java. (Pramanick, 2019)

2.2.2 Description

“Python is an interpreted, object-oriented, high-level programming language with dynamic

semantics. Its high-level built in data structures, combined with dynamic typing and dynamic

binding, make it very attractive for Rapid Application Development, as well as for use as a

scripting or glue language to connect existing components together. Python's simple, easy to

learn syntax emphasizes readability and therefore reduces the cost of program maintenance.

Python supports modules and packages, which encourages program modularity and code

reuse. The Python interpreter and the extensive standard library are available in source or

binary form without charge for all major platforms, and can be freely distributed.” (Python,

2021)

11

2.2.3 Difference to Java

In the last years Python has become more popular than Java which you can see in the figure

1. The Figure shows the Google Trends and that Python’s fame rose above Java in 2017. This

trend might come from Python’s great use for experimentation code, which is more used

nowadays, while Java is better for Production code. (Rowe; Johnson, 2017)

Figure 1: Google Trends: Python vs. Java

While Java is a statically typed and compiled language, Python is a dynamically typed and

interpreted language. The difference is that the programming language Java is faster at

runtime and also easier to debug, but Python is much easier to read and to use. (Rowe;

Johnson, 2017)

2.3 Jython

2.3.1 History

Jython was created in 1997 by Jim Hugunin. It was originally made to replace C with Java for

performance-intensive code accessed by Python programs. In October 2000 they moved to

SourceForge and in January 2005 Jython was awarded a grant by the Python Software

Foundation. (Jython, 2021)

12

2.3.2 Description

“Jython is a Java implementation of Python that combines expressive power with clarity.

Jython is freely available for both commercial and non-commercial use and is distributed with

source code under the PSF License v2.” (Jython, 2021)

2.3.3 Usage

Jython is needed to create Python servlets that can be used in Apache Tomcat. This extension

makes it for Tomcat possible to understand and execute the written Python code. So with

Jython it is possible to program in Apache Tomcat not only with the programming language

Java but also with Python.

https://go.java/index.html
https://www.python.org/
https://github.com/jython/jython/blob/master/LICENSE.txt

13

3 Nutshell Examples

Various Nutshell examples are explained in detail in this chapter and presented with the help

of lines of code and pictures. The examples contain fundamental functions of a web server

and provide a basic understanding of the functionality of servlets that can be used in Tomcat.

3.1 Nutshell context

Apache Tomcat offers a variety of Java servlet examples that can be found under the path

"<CATALINA_HOME>\webapps\examples\WEB-INF\classes" together with the compiled

classes. In this seminar paper, these examples serve as the basis for the Nutshell examples.

3.2 Precautions

In order to be able to carry out the following Nutshell examples, some precautions must be

taken. The download and installation of some software is necessary, including Apache Tomcat,

Java and Jython. Some detailed installation instructions can be found in the appendix of this

seminar paper. In addition a suitable development environment is required to create the

Python servlets. A very popular and often used environment is PyCharm, which also offers a

free version:

• PyCharm download:

 https://www.jetbrains.com/de-de/pycharm/download/#section=windows

3.3 Python Servlet Nutshell Examples

3.3.1 Hello world

The first servlet is a simple one to show the general functionality of Python servlets.

https://www.jetbrains.com/de-de/pycharm/download/#section=windows

14

The first step is to create a new Python file called HelloWorld.py, and save it in the web-apps

folder of the Tomcat installation. The code for the first Python servlet is stored in this file and

can be retrieved later from the Tomcat server. The Python file should then be filled with the

following code. (see figure 2)

Figure 2: HelloWorld Servlet Code

First, the package java.servlet.http must be imported (see Code Line 3). Then a new class is

created, which must have the same name as the PythonServlet, HelloWorld. In addition, the

previously imported HttpServlet must be retrieved from this class. (see Code Line 5) Within

this class, a function must now be created, called doGet, which contains the variables self, req,

res. (see Code line 6).

• req = request

• res = response

The next step is to tell the server that the response message should be considered as an HTML

file (see Code line 7) and then allocate a output writer to write the response message into the

network socket. (see Code line 8) As a last point, a response message must be written to the

server in an HTML document. (see Code line 10-16) Anything can be sent to the server in this

form, it is not necessary to use the exact text from figure 2. Because of the implementation of

HTML it is possible to use all the commands that exist in HTML and the server will understand

and display them correctly. The HelloWorld servlet is now ready and can be retrieved from

15

the server. To do this, the server must be started and the file which was just created must be

retrieved in a browser.

• HelloWorld Servlet: http://localhost:8080/JythonTemplate/HelloWorld.py

If everything has been done correctly, the browser should display the following content. (see

figure 3)

Figure 3: HelloWorld Servlet output

Now the first servlet has been created and successfully retrieved from the server.

3.3.2 Request Info

In the next example some request information of the client will be viewed. The servlet will

show us the method, the request URL, the protocol, the path and the remote IP address of

the client.

At the beginning, a new file with the name RequestInfo.py is created in the web-apps folder.

Now this file is filled with a few lines of code to get the servlet running. (see figure 4)

http://localhost:8080/JythonTemplate/HelloWorld.py

16

Figure 4: RequestInfo Servlet Code

The first steps are exactly the same as in the first HelloWorld example, so import the package

again (see code line 3), create the class (see code line 5) and the function (see code line 7). In

addition, a new variable is now defined in the function with the name info. In this variable, the

required information is obtained through various commands. (see code line 10-15)

• getMethod() = “HTTP defines a set of request methods to indicate the desired

action to be performed for a given resource. Although they can also be nouns,

these request methods are sometimes referred as HTTP verbs. Each of them

implements a different semantic, but some common features are shared by a

group of them:” (MDN contributors, 2021a)

• getRequestURI() = prints out the complete URI of the client

• getProtocol() = returns the protocol of the client with the version

• getPathInfo() = returns the path passed to the servlet

• getRemoteAddr() = returns the IP Adress of the client

Unlike in the HelloWorld example, the HTML file is not output directly in the next step, but a

new function called makeHTML is created for better clarity. This function returns the HTML

17

file, which can be adapted as desired. (see code line 24) Another advantage of this function is

that it is easier to adapt, i.e. you can edit the HTML file and use it anywhere in the code.

Furthermore, there is a doPost function for the first time, but it is not yet used in this example.

(see figure 4)

The servlet is ready to go. If the server is still running, the file name is now simply changed in

the URL.

• RequestInfo Servlet: http://localhost:8080/JythonTemplate/RequestInfo.py

The browser should display the following content. (see figure 5)

Figure 5: RequestInfo Servlet output

The request information is now fetched by the commands of the servlet and displayed in the

browser. Thus, the second example is also ready and can be called up at any time.

http://localhost:8080/JythonTemplate/RequestInfo.py

18

3.3.3 Request Header

The following example highlights further information of the request header. HTTP headers

allow the client and server to pass additional information to a request or response.

As in the previous examples, a new file called RequestHeader.py is created at the beginning

and filled with some lines of code. (see Figure 6)

Figure 6: RequestHeader Servlet Code

As in the first two examples, the first steps are exactly the same, they will be skipped from this

example onwards. Again, a variable called info is created in the doGet function but this time

it is left empty. (see code line 11) Now a loop is formed to store each name and value from

the header as its own variable with the help of the getHeaderNames() command. (see code

line 12) Then the names are stored together with their value in the previously created variable

'info'. In addition, some HTML code is added to display the output more nicely. (see code line

19

14) Again, a function is created that contains the HTML file that is to be sent to the Tomcat

web server. (see code line 18-24) Now the browser is opened again to try out the servlet.

• RequestHeader Servlet: http://localhost:8080/JythonTemplate/RequestHeader.py

When everything has been successfully implemented again, the following output is generated.

(see Figure 7)

Figure 7: RequestHeader Servlet output

To better understand the output generated, here is an overview:

• Host: Specifies the domain name of the server and the TCP port number on which the

server is listening. (MDN contributors, 2021b)

• Connection: Controls whether the network connection should remain open after the

current transaction has ended. (MDN contributors, 2021b)

• Cache-control: Specifies instructions for cache mechanisms in requests and responses.

(MDN contributors,2021b)

• Sec-ch-ua(-mobile): “The set of Sec-CH-UA-* client hints aims to deprecate and replace

the User-Agent header in order to reduce the passive fingerprinting surface we expose

via HTTP requests.” (Chrome Platform Status, 2021)

http://localhost:8080/JythonTemplate/RequestHeader.py

20

• Upgrade-insecure-requests: Sends a signal to the server that the client prefers an

encrypted and authenticated response and that the upgrade-insecure-request

instruction can be processed successfully. (MDN contributors, 2021b)

• User-agent: Contains a characteristic string with which the network protocol partners

can determine the application type, operating system, software provider or software

version of the requesting user agent. (MDN contributors, 2021b)

• Accept: Informs the server what kind of data can be returned. (MDN contributors,

2021b)

• Sec-fetch-site: Indicates the relationship between a request initiator's origin and the

origin of the resource. (MDN contributors, 2021b)

• Sec-fetch-mode: indicates the request's mode. (MDN contributors, 2021b)

• Sec-fetch-user: is only sent for requests initiated by user activation, and its value will

always be ‘?1’. (MDN contributors, 2021b)

• Sec-fetch-dest: indicates the request's destination, that is how the fetched data will

be used. (MDN contributors, 2021b)

• Accept-encoding: Notifies the server of the encoding algorithm, usually a compression

algorithm, that can be used when returning a resource. (MDN contributors, 2021b)

• Accept-language: Notifies the server of the language in which it should return. This is

a hint and not necessarily under full control of the user: the server should always be

careful not to override an explicit user selection. (MDN contributors, 2021b)

3.3.4 Request Parameter

In the next example, data is requested from the user and sent back to the server.

As always, it starts with a new file called RequestParam.py. (see figure 8)

21

Figure 8: RequestParam Servlet code

22

The first lines contain the usual code, see ‘HelloWorld’ example. In the doGet function, a

variable with an empty set is created again, called params. (see code line 10)

After that, some variables are requested with the getParameter() function and the empty

variables are filled with them. The requested data is transmitted by the user in the browser,

more on this later. (see code line 12-15)

In the next step, a if-else statement is made that says: If the variables to be filled are not

empty, they are sent back to the server and displayed to the user, otherwise a message is

displayed saying that no parameters were entered. The empty variable params is then filled

with HTML code and the requested variables in the loop. (see code line 17-22)

The empty variable params is then filled with HTML code and the requested variables in the

loop. This is called later by the HTML code and then returns the doGet function. (see code

line 28-29)

Then the function makeHTML is filled with HTML code. This time objects that the user can edit

are used in this code. (see code line 31-56)

Now the HTML code has to be printed in the doGet function. (see code line 26)

The servlet is now ready and can be accessed in the browser

• RequestParam Servlet: http://localhost:8080/JythonTemplate/RequestParam.py

The servlet output should look like this: (see figure 9)

http://localhost:8080/JythonTemplate/RequestParam.py

23

Figure 9: RequestParam Servlet output without data

As can be seen in the output, the server requests various data from the user, the First Name,

the Last Name, the Age and the Nation. Currently, no data has been transferred yet, therefore

the previously created variables are empty and the previously defined text is displayed.

Now the data is filled and submitted. (see figure 10)

24

Figure 10: RequestParam Servlet output with data

The requested data has been sent to the server, which now presents this data to the user. So

the servlet is complete and can be used at any time.

3.3.5 Cookies

This example deals with the so-called cookies.

Cookies are data packets that are exchanged between computer programs. In general, the

term is usually used to describe HTTP cookies, which websites use to store user data locally

and on the server in order to make individual functions and web applications such as online

shops, social networks and forums more user-friendly. (Digital Guide IONOS, 2020)

A new file with code, called Cookies.py, is created. (see figure 10)

25

Figure 11: Cookies Servlet code

26

As always, the first lines of code remain the same. (see HelloWorld Servlet)

In the doGet function, cookies are requested with the help of the command getCookies()

(see code line 14)

The next step is to create an if-else statement that says: If the name of the cookie is not empty

a loop is created that stores the corresponding value for each name together with some HTML

code in a new variable called params . (see code line 15-20)

Now a code is written that creates a new cookie that is entered by the user. The name of the

cookie is queried and stored in a variable. If this name is not empty and longer than 0, the

corresponding value is retrieved and stored. Then, with the help of the command addCookie(),

a new cookie with name and value is created and sent to the server.(see code line 23-26)

The variable params is also filled with HTML code, the name and the value of the cookie to

show the user the cookie. (see code line 27-28)

Again, the doPost function is used to send the doGet function to the server. (see code line 32)

in the function makeHTML the necessary HTML code is saved again, which contains some

fields that the user can fill in. (see code line 35-51)

Then the HTML code must be sent to the server with the params variable. (see code line 30)

The servlet is ready and can be called up in the browser.

• Cookies Servlet: http://localhost:8080/JythonTemplate/Cookies.py

The following output is displayed: (see figure 12)

http://localhost:8080/JythonTemplate/Cookies.py

27

Figure 12: Cookies Servlet output without cookies

Since no cookies have been sent to the server yet, none are displayed. There are some plug-

ins for the browser that recognise and display cookies. If such a plug-in is used, this message

appears, which says: No cookies available. (see figure 13)

Figure 13: Cookie Plug-In without cookies

New cookies can now be created by entering the name and value of the cookie in the empty

fields and then sending them. (see figure 14)

28

Figure 14: Cookie Servlet output with cookies

The cookies created are now displayed to the user. Previously created cookies are displayed

further up and the newest cookie in a separate field below. When the browser's cookie plug-

in is used again, the following content appears. (see Figure 15)

29

Figure 15: Cookies Plug-In with cookies

The plug-in shows the cookies, so the cookies were actually created and saved in the browser.

The servlet is complete and can be used at any time.

30

4 Conclusion

To conclude the seminar paper, a concise summary is provided to give an overview of the main

findings of this work. It also provides an outlook that can be used as an approach for further

research in this topic area.

4.1 Summary

In the first part of the thesis, the basic theoretical concepts of the web application Apache

Tomcat were discussed together with the historical aspect. Likewise, the theoretical aspects

of the Python programming language were drawn in comparison to Java. Finally, the

theoretical background of Jython was examined in more detail. This laid the foundation for

the practical part, which shows various Nutshell examples that present the functionality and

use of Python servlets. It was not only described in detail how to create these Nutshell

examples but also how to execute them and to which outcome the respective servlets lead.

The Nutshell examples show that using Python simplifies the creation of servlets, as less typing

is required. The language is also more forgiving. Another finding of the practical part is that it

is easy for anyone to create their own servlets and thus get their own web server up and

running. Apache Tomcat is still a powerful tool for web servers and due to the open source

aspect it continues to be developed and improved by many people. It is also very well

documented and if problems arise, the internet offers many solutions quickly and easily. In

comparison with other competing products, Apache Tomcat offers numerous features. The

configuration progress is very simple as well as the installation of Plug-Ins like Jython.

4.2 Outlook

The seminar paper was an insight into the world of web servers. It is intended to be a basis for

the use of Python for servlets that can be used in Apache Tomcat. Positively, the

implementation of Python using Jython was working accurately and had no problem being

implemented. Further work could focus on implementing other programming languages and

adopting the functionality of Java Servlets. The seminar paper offers only a small collection of

31

nutshell examples that explain and present the basic concepts of Servlets. Thus, another

interesting aspect for future work would be the creation of more complex Nutshell examples

that exploit the multitude of functions that Apache Tomcat offers. In principle, further

approaches in this thematic area are unlimited, and the seminar work provides the foundation

for this.

32

Bibliography

Chrome Platform Status (2021). Feature: Sec-CH-UA Client Hints. Retrieved May 31,

 2021, from https://www.chromestatus.com/feature/5995832180473856

Davis, M. (2014, June 17). Five Reasons You Should Use Tomcat (Updated for

 2020). Retrieved May 29, 2021, from Future Hosting website:

 https://www.futurehosting.com/blog/five-reasons-you-should-use-tomcat/

Digital Guide IONOS (2020). Was sind Cookies? Retrieved May 31, 2021, from

 https://www.ionos.at/digitalguide/hosting/hosting-technik/was-sind-cookies/

Jython (2021). HISTORY OF THE SOFTWARE. Retrieved May 29, 2021, from

 https://www.jython.org/jython-old-sites/archive/22/history.html

MDN contributors (2021a). HTTP request methods. Retrieved May 31, 2021, from

 https://developer.mozilla.org/de/docs/Web/HTTP/Methods

MDN contributors (2021b). HTTP Header. Retrieved May 31, 2021, from

 https://developer.mozilla.org/de/docs/Web/HTTP/Headers

OREILLY (2021). Where Did Tomcat Come From? Retrieved May 29, 2021, from

 https://www.oreilly.com/library/view/tomcat-the-

 definitive/9780596101060/ch01s05.html

Pramanick, S. (2019, May 06). History of Python. Retrieved May 29, 2021, from

 https://www.geeksforgeeks.org/history-of-python/

Python. (2021). What is Python? Executive Summary. Retrieved May 29, 2021, from

 https://www.python.org/doc/essays/blurb/#:~:text=Python%20is%20an%20

 interpreted%2C%20object,programming%20language%20with%20dynami

 c%20semantics.&text=Python's%20simple%2C%20easy%20to%20learn,p

 rogram%20modularity%20and%20code%20reuse.

Rowe, W.; Johnson, J. (2017). Python vs Java: What’s the difference? Retrieved May

 29, 2021, from https://www.bmc.com/blogs/python-vs-

 java/#:~:text=Java%20is%20a%20statically%20typed,use%20and%20eas

 ier%20to%20read.

https://www.chromestatus.com/feature/5995832180473856
https://www.futurehosting.com/blog/five-reasons-you-should-use-tomcat/
https://www.ionos.at/digitalguide/hosting/hosting-technik/was-sind-cookies/
https://www.jython.org/jython-old-sites/archive/22/history.html
https://developer.mozilla.org/de/docs/Web/HTTP/Methods
https://developer.mozilla.org/de/docs/Web/HTTP/Headers
https://www.oreilly.com/library/view/tomcat-the-
https://www.oreilly.com/library/view/tomcat-the-
https://www.geeksforgeeks.org/history-of-python/
https://www.python.org/doc/essays/blurb/#:~:text=Python%20is%20an%20
https://www.python.org/doc/essays/blurb/#:~:text=Python%20is%20an%20
https://www.bmc.com/blogs/python-vs-
https://www.bmc.com/blogs/python-vs-

33

Appendix

Installation Guide

Step 1: Download prerequisite Software

The first installation step is to download the necessary software, which is the basic

requirement for your first own web server. You need to download either Java Runtime

Environment (JRE) or Java Development Kit (JDK) because these tools help you to add Java to

your Windows environment variables what makes it possible to use Apache Tomcat. After the

software has been downloaded, it must be installed.

• Java Runtime Environment: https://www.java.com/de/download/manual.jsp

• Java Development Kit: https://www.oracle.com/java/technologies/javase-jdk16-

downloads.html

After the installation is done you have to download Apache Tomcat, which you can find on the

homepage of the software. Apache Tomcat version 9 was used in this seminar paper:

• Apache Tomcat: https://tomcat.apache.org/download-90.cgi

On the website you can find various files for download, including a 64-bit Windows zip file,

which is required. (See Figure 16)

https://www.java.com/de/download/manual.jsp
https://www.oracle.com/java/technologies/javase-jdk16-
https://www.oracle.com/java/technologies/javase-jdk16-
https://tomcat.apache.org/download-90.cgi

34

Figure 16: Apache Tomcat Download

Step 2: Create directories and files

After the required software has been downloaded and installed, a new folder must be created

in the Windows (C:) directory. The folder can be named individually, in this seminar work it is

called ApacheTomcatProjekt. (see Figure 17)

Figure 17: ApacheTomcatProjekt directory in Windows (C:)

35

Now the previously downloaded ZIP file containing Apache Tomcat must be unpacked in this

folder. In order to unpack the file, you need another software such as WinRAR. However, there

are also various other programmes with which ZIP files can be unpacked.

• WinRAR download: https://winrar.de/downld.php

After the ZIP file has been successfully unpacked in the folder, the order should look like this:

(see Figure 18)

Figure 18: Apache Tomcat unpacked

This folder can also be named individually. In this example, the original name is retained. If

the folder has been unzipped correctly, it should contain several other folders and files. One

of these folders is called webapps. (see Figure 19)

Figure 19: webapps directory

https://winrar.de/downld.php

36

Now create a new folder in the webapps folder. The name of this folder can again be freely

chosen, here it is called Jython Template. (see Figure 20)

Figure 20: JythonTemplate directory

Now two more folders have to be created in JythonTemplate, WEB-INF and META-INF. It is

very important to use exactly these names. (see Figure 21)

Figure 21: WEB-INF and META-INF directory

Another folder is now created in the WEB-INF folder with the name lib. Here, too, the exact

naming is important. (see Figure 22)

37

Figure 22: lib directory

The next step is to download another important piece of software, Jython. On the website of

Jython you can find the required file.

• Jython download: https://www.jython.org/download.html

Under this link you can find several versions of Jython. Choose the Jython standalone file of

the latest version, jython-standalone-2.7.2.jar. After the download is complete, copy this file

into the WEB-INF/lib folder. (see Figure 23)

Figure 23: jython-standalone-2.7.2.jar

This library is now loaded into memory when Apache Tomcat is started.

The Jython servlets work with the help of an intermediate Java servlet called PyServlet and

this is the servlet in which Tomcat runs Jython servlets. In the following, Tomcat needs to know

that it should run the PyServlet when it receives a request for a resource with the extension

*.py. We achieve this with the help of the web.xml file. To do this, you must again access the

WEB-INF folder, in which a file with the name web.xml is inserted, which contains the

following content. (see Figure 24) You can work with any programme that can edit *.xml files.

One recommendation is the programme Sublime Text, which can be found under this link.

https://www.jython.org/download.html

38

• Sublime text download: https://www.sublimetext.com/download

Figure 24: web.xml content

Once the required file has been successfully created, the directory WEB-INF should look like

this. (see Figure 25)

Figure 25: WEB-INF directory with web.xml file

Step 3: Test the server

The next step is to test whether everything works as it should. To do this, we have to create a

servlet with which we can test whether Apache Tomcat recognises everything. To do this, a

39

Python file must be created that can be named indvidually, in this example it is called

jythonTemplate.py, as it is to serve as a template for further servlets. It must contain the

following content. (see Figure 26)

Figure 26: jythonTemplate.py content

The file jythonTemplate.py must now be inserted into the folder jythonTemplate. For a good

overview, another folder called Templates was created in the JythonTemplate folder in this

example, in which the Python file can be found. However, this is not necessary because you

can simply leave the file in the JythonTemplate folder. (see Figure 27)

Figure 27: jythonTemplate.py path

40

Now you can start the Tomcat server and test the functionality. To do this, open the CMD shell

and navigate to the required folder: \ApacheTomcatProject\apache-tomcat-9.0.46\bin. Then

execute the file startup. (see Figure 28)

Figure 28: Apache Tomcat Server startup

 A new Java window opens in which the Web Server is started. (see Figure 29)

Figure 29: Java Window for Server start

After these steps, the server is online and you can access it. To do this, go to the browser of

your choice and open the following link:

• Tomcat Server: http://localhost:8080/JythonTemplate/Templates/jythonTemplate.py

http://localhost:8080/JythonTemplate/Templates/jythonTemplate.py

41

If the output of the website now looks like this (see Figure 30), everything runs smoothly and

you can start to create your own servlets in Python.

Figure 30: Tomcat Servlet Test

To shut down the server, open the Java window in which the server was started up and press

the key combination Ctrl+c.

