

Proprietary vs. Open-source Software

Markets in IT: Apple, Microsoft, Google

Gregor Koppensteiner

Wien, 17.12.2020

Seminar paper at the Department of

Information Systems and Operations

Management

 I

Copyright clause

Please read carefully and sign before submitting the work!

I certify by my signature,

• that I have written this thesis independently, have not used any sources or

aids other than those indicated, and have not made use of any other

unauthorized assistance.

• that the present work has not been submitted for review in any form as an

examination paper to an assessor in this country or abroad.

I am aware that any violation will have consequences under both study law and

criminal law. Immediately, a copyright violation will result in a negative exclusion

from the course in question as well as an immediate report to the Office of the

Dean of Studies of the Vienna University of Economics and Business Administration

and to the authors affected by the plagiarism.

Gregor Koppensteiner
(h11801956)

 II

Table of contents

LIST OF TABLES ... III

LIST OF ABBREVIATIONS ... III

1 INTRODUCTION .. 1

2 THEORETICAL PRINCIPLES ... 2

2.1 PROPRIETARY SOFTWARE ... 2
2.1.1 Historical Background and Principles ... 3
2.1.2 Borderline ... 4

2.2 OPEN-SOURCE SOFTWARE ... 5
2.2.1 Historical Background and Principles ... 7
2.2.2 Borderline ... 9

3 COMPARISON .. 10

4 PROPRIETARY AND OPEN-SOURCE MARKETS IN A BUSINESS CONTEXT 13

5 PROPRIETARY AND OPEN SOFTWARE IN THE BIG 3 TECHS COMPANIES 18

5.1 APPLE ... 18
5.2 MICROSOFT ... 19
5.3 GOOGLE ... 21

6 THE DISTRIBUTION OF PROPRIETARY AND OPEN-SOURCE SOFTWARE 23

7 CONCLUSION AND DISCUSSION .. 25

8 BIBLIOGRAPHY ... 26

9 APPENDIX .. 31

 III

List of tables

Table 1: Comparison PS and OSS ... 11

Table 2: Economic aspects .. 15

List of abbreviations

OSS .. open-source software

OS ... open source

OS (in chapter 6) .. operation system

PS ... proprietary software

TCP ... total cost of production

TCO ... total cost of ownership

 1

1 Introduction

The innovation processes applied in the software field are already widely discussed.

The successful phenomenon of open-source software (OSS) raises new research

questions about whether and how the free circulation of ideas advocated by the

movement and the collective handling of intellectual property rights perpetuate

innovation. The ideological counterpart to this tendency is the use of proprietary

software, which is positioned at the other end of the spectrum.

The purpose of this paper is to provide a foundation to build these research

questions on. This seminar paper discusses these two development approaches in

terms of their principles, their historical background, and how they are used and

disseminated in information technology. In terms of practical use, the three major

IT companies, Apple, Microsoft and Google, are examined to identify their position

on this topic. This investigation requires an economic reference. Therefore, the

proprietary and open-source development approach are put into an economic

context - from the perspective of the vendor and that of the customer.

The studies published on this topic so far are roughly divided into two categories:

a product-related and an economy-related interpretation. Another objective of this

work is to combine these two approaches, as they are not necessarily excluding

each other.

The underlying research question of this seminar paper is: What is the specific

nature of proprietary and open-source software and how do they coexist in an

economic context?

 2

2 Theoretical principles

The past forty years can be characterized by increasingly rapid advances in the

field of providing software. Over time, two concepts have become established that

could not be more contrary: proprietary and open-source software. In the following

chapter these two theses are first outlined and examined according to their

principles. Thereby, attention is also paid to the historical background.

The research was mainly based on journal articles, selected book chapters, and

academically objective websites that have provided valuable insights over the past

25 years to answer the stated research question.

2.1 Proprietary Software

There is a relatively small amount of literature dealing with relevant proprietary

software. The general understanding that the “manufacturing method” of a product

lies with the producer is also assumed for immaterial goods. And this is exactly

what proprietary software, also called closed-source software, is meant by.

In this context “manufacturing” refers to the source code and its accessibility and

modification. Proprietary software is software which is owned by the developers.

It is therefore subject to copyright laws, and only the author or owner has control

over its development, just like with any other product. Producing proprietary

software provides a clear business model – the owners sell their product and make

money with it (Thompson, 2020).

The actual product is the source code, which is seen as a competitive advantage

and at the same time a trade secret. To protect this asset, the user is deprived of

 3

the freedom to redistribute, examine and execute the software for any purpose.

From the developer's point of view this is ensured by the copy prohibition via

different contractual regulations, such as EULA, the End User License Agreement

(Webcampus.de, 2017).

Closed-source software, as already mentioned, is characterized by a number of

restrictions for the user. These can only be executed by the distributor. Therefore,

the ownership rights must be secured from each programmer who may have co-

authorship rights in the software. This is because copyright ownership

automatically vests in the individuals who create the work, unless the work is a

“work made for hire.” Therefore, it is common practice in software companies for

independent contractors who are commissioned to develop software to obtain a

written assignment of the contractor's rights to the software to ensure that it is

actually transferred to the company (Finkel, 2017).

2.1.1 Historical Background and Principles

The way software understands itself has changed continuously since the beginning

of computerization in the 1960s.

The first computers at that time would hardly be recognizable in terms of hardware

and software as their pendants of today. They were huge machines that took up

entire rooms, which had to be specially cooled. The computers were primarily used

to process high-volume data, and because they were so costly, they were often

leased to corporate clients rather than being sold. All software installed on the

computers was also supplied by the vendors, who also provided the source code.

Even though there was only a handful of customers at that time, it was

nevertheless possible to program parts of the system on one’s own. This procedure

 4

became the norm at that time, as it made it accessible to interested parties

(especially research institutions and universities) to participate in further

development.

However, this very collaborative approach has been legally restricted by declaring

computer programs as intellectual property of their authors. At this point software

gained the same status as literary works, subjecting them to the same copyright

laws.

This status cleared the way for the closed-source software business model and

marked the beginning of software licensing. Software moved away from the

collaborative development model, and in the late 1970s and early 1980s it became

standard practice to charge for software licenses.

The philosophy of proprietary software implies that the best way to drive

innovation is to make it lucrative by linking revenue to progress. Setting up a

business from a product ensures that developers are committed to improving the

product for their paying end users and creating continuous value (Thompson,

2020).

This long-lasting mindset was only called into question again by the emergence of

the open-source business model. This is discussed in chapter 2.2.

2.1.2 Borderline

This subitem clarifies which properties proprietary software must necessarily have.

But first the most relevant terms have to be clarified.

 5

Proprietary software is not the equivalent of commercial software, although the

two terms are sometimes used synonymously in articles about free software. Even

software distributed free of charge - e.g., freeware - can be "proprietary" if the

licensee cannot acquire the freedom of use as with open-source software. Even if

this could only be verified by means of Internet research, it should be noted that

proprietary software should be distinguished from commercial software. It is

possible for software to be commercial (i.e., aimed at making a profit for the

producers) without being proprietary. The opposite case, as mentioned with

freeware software, is also possible (Raymond, 2015).

There are sufficient popular examples of closed-source software. To list them

would go beyond the scope of this article. Hence a different approach: If a software

is not open source, it is proprietary. Only then it is possible to distinguish between

freeware and commercial software.

2.2 Open-source Software

Open-source software (OSS) has recently been of great interest both to the

software industry and to economic theory. What used to be the strategy behind

the operating system Linux has turned into a growing and much-studied

phenomenon. Open-source has led to a rethinking in software development and

has also established itself as an antithesis to closed-source software distribution

(Dalle/Normale/Cachan et al., 2002). Many economic actors now decide for an

open-source strategy, i.e., adopt open-source software products and even

sometimes publish the sources of the programs they have written instead of

keeping them for themselves as used to be the case in the usual proprietary model.

The long-lasting hype about open-source has also led the established media to

claim that open-source will be the future of software development (Learnings from

Linux, n.d.; Noyes, 2013).

 6

Reason enough to take a closer look at the topic in this chapter, with regard to the

historical background and the clear differentiation from proprietary software.

To get the strategy behind the development type, open source requires a clear

definition. By its nature, OSS is “free” which means that the source code (human

readable code) is made publicly accessible at no cost, so any conceivably individual

can download the source code, compile it into binary code (machine readable

code), and run it on their computer (Sacks, 2015). Software can be made open

source by individuals for altruistic motives as well as by organizations or

companies.

The legitimate question that arises in this approach is: Why should so many

individuals and whole communities dedicate to provide their work as open-source

projects from which they seem to get no reward, while these developments provide

great utility and thus create considerable monetary value?

To illustrate: The most popular OSS projects, the operating system Linux has a

rapid growing market share of 3.6% in 2020 and the browser Firefox from the

Mozilla foundation counted over 850 million downloads in 2018 (Henry, 2020;

Hayon, 2019).

These two successful stories prove that open-source developments are not just

peripheral phenomena but have been widely accepted for quite some time. In

order to answer the question mentioned above, we need to know the principles

and background of the motives for OSS.

 7

2.2.1 Historical Background and Principles

Open source has a long and controversial history.

The first influences of the open-source Strategy were for instance the do-it-

yourself movement, the hacker movement of the 1960/1970s and the Free

Software movement of the 1980s (Singh, 2018; Aioma, 2019). At that time,

software vendors began to increasingly copyright their technologies, withhold

source code and demand licensed use of software for a fee. More precisely, several

companies began to deliver software not in the previously common form of

program source code, but in the form of a purely machine-readable format, the

so-called binary format. Proprietary software took broad market share in this world

of technology (Singh, 2018).

In contrast, a group around Richard Stallman at the Massachusetts Institute of

Technology (MIT) Artificial Intelligence Lab founded an antithesis. According to his

thesis, software should not have owners (Stallman, 1994).

As Stallman (1994) argues the society needs information that is truly available to

citizens themselves - for example, programs that people can read, correct, adapt

and improve on their own, not just operate. Nowadays, software developers only

offer black boxes that cannot be viewed (Stallman, 2002). In his final part he

claims that the society needs to encourage the spirit of voluntary cooperation in

its citizens. And therefore “[…] free software is a matter of freedom, not price”

(Stallman 1994, p. 26). In summary, Stallman was primarily concerned that users

should be able to use the software at their own discretion and adapt it if necessary.

But the question about the motives still exists. Sufficient research has been done

on the motivation behind the development of open-source. Based on the most

 8

popular OSS projects, two particularly relevant scientific literatures were

conducted by Hertel, Niedner & Herrmann (2003) on Linux and Mendonca & Sutton

(2008) who dealt with Mozilla. Both found certain points that every OSS project

has in common.

In the studies mentioned, two general groups of motives are identified: intrinsic

and extrinsic motives. While intrinsic motivation describes the situation in which

somebody is doing something because it is inherently interesting, enjoyable or

challenging, in the case of extrinsic motivation, someone expects a separable

outcome (Ryan & Deci, 2000).

Reviewing the rapidly emerging literature on OSS, the three crucial themes which

regularly appear when analyzing the intrinsic motivation of OSS programmers and

in particular of initiators are (1) the need for a specific software solution, i.e. the

phenomenon of user programmers, (2) the fun of play and (3) the desire to give

a present to the programmer community, i.e. a gift benefit (Bitzer, Schrettl &

Schröder, 2007). In their model of the "OSS provision game" the three authors

explained the reasons why developers are more likely to provide their software

open source.

Spaeth, von Krogh & He (2015) deliver more accessible motives in their paper

"Perceived Firm Attributes and Intrinsic Motivation in Sponsored Open-source

Software Projects". They report that young OS developers are driven by interest,

fun, altruism, recognition within the group and willingness to learn. In addition,

established OS projects offer an ideal springboard for further careers.

In recent years, this "innovation of the thousands" has also established itself in

the private sector, especially at technology companies such as Google and IBM.

They have recognized that open-source communities program hundreds of

 9

thousands of lines of code for a new product much faster and more efficiently than

a closed, in-house team (Schlaefli, 2014).

This aspect will be discussed later on in chapter 5 and 6.

2.2.2 Borderline

In order to also find a delimitation, as in the more detailed definition of proprietary

software, it is also necessary to discuss common synonyms in linguistic usage.

An analysis from Hars (2002) found that Open-source software is generally

confused with trial software, free software, share-ware, or royalty-free binaries.

Moreover, freeware is software that is completely free for anyone to use or pass

along to others to use. With trial software, consumers can try the software before

they decide to buy - they only have to pay when the trial period has expired (Dhir

& Dhir, 2017). With shareware, it is the intention that copying and passing it on to

others, as long as it is the trial version of the software and not the registered

version (Hippel & Krogh, 2003).

Beyond all these aspects of various synonyms, open-source software stands out.

The relevant distinguishing characteristics can be seen especially in terms of

license rights, redistribution, accessibility and individual modifications.

 10

3 Comparison

The division into these two very different development approaches have led to a

split among software developers. The antitheses led to a far-reaching philosophical

debate. On the one side there are open-source supporters insisting that the open-

source philosophy fosters transparency and collaboration amongst developers,

promoting faster technological advancement and innovation. For open-source

fans, the principle is that the entire community, including non-programmers,

benefits from developments and progress, which will encourage better software

for everyone is justifiable (Thompson, 2020).

But for the business-minded side, open-source software simply does not make

sense. It is understandable that the development of software involves a significant

amount of effort, which ties up resources such as time, previous knowledge and

organization. This effort should be monetarily compensated and the developer

himself should be credited for the work done.

Taken together, these contrary views are indeed very logical. Thus, a deeper

insight and a far-reaching comparison between closed and open-source

development is appropriate.

To achieve this, the following listing (Table 1: Comparison PS and OSS) describes

the three most common aspects of software development and how proprietary and

open-source software influences them. The analysis is done from the viewpoint of

the vendor and partly from that of the consumer.

 11

Table 1: Comparison PS and OSS

Aspect Proprietary software Open-source software

Product

quality

For an increase in cost, stability,

more commercial support, and

software development, people

tend to move to proprietary

solutions and that aspects are

more covered by closed-source

projects (Dhir/Dhir, 2017).

Dhir & Dhir (2017) found out for

operating systems that in terms

of the long run open-source

software will have higher

general quality than commercial

code software in terms of

security, free support,

compatibility and availability.

This also applies to mobile OS

industry and the web browser

industry.

Usability Some sources claim that

proprietary and commercial

software developers deliver an

improved overall user

experience. Commercial

vendors rely on the customer

choosing their solutions over the

number of free, open-source

alternatives on the market. User

interfaces are therefore usually

sleeker, and general usability is

often on a higher standard in a

closed source product

(Thompson, 2020). Particularly

when it comes to user-

friendliness and functions,

software companies, which are

constantly exposed to free-

Open-Source Software has a

reputation for being not very

user-friendly and therefore

hardly suitable for normal users.

According to Mühlig (2005), this

is mainly due to the fact that the

most common open-source

technologies focus more on the

server and backend-side than

on the desktop. Furthermore, in

the long to mid-term, OSS

cannot exploit user-friendliness

as a market advantage.

 12

market competition, must

constantly improve.

User

dependency

As proprietary software is

privately-owned, this indicates

that the user has no control over

the lifespan and the technical

support. In addition, there is a

potential risk that when a

primary developer drops out of

support, the already integrated

software will become unusable

(Kazmeyer, n.d.). With the

vendor lock-in strategy (or the

Pottersville pattern), this

targeted approach has already

reached parts of the overall

market. In simple terms, the

aim is to bind customers to the

software in the long term and to

discourage them from changing

provider by incurring substantial

switching costs (Mizinska,

2019).

The distributor of Linux, Red

Hat, states on their corporate

website that open source offers

not only more flexibility, but

also lasting longevity (Red Hat,

n.d.). In summary, open-source

guarantees a minimization of

customer dependency due to

longer development and

accessibility. In order to avoid

the vendor lock-ins mentioned

for proprietary software an

empirical survey from January

2020 revealed that 62% of

respondents use open-source

software for exactly this reason

(Pescador, 2020).

Overall, these results indicate that the selection of proprietary or open-source

software is characterized by different trade-offs. The decision is up to the

individual, who weights certain aspects according to personal preferences. In

section 6 additional properties are listed, as well as further factors of the selection

process within companies when choosing software.

 13

4 Proprietary and Open-source Markets in a Business
Context

Popular media indicate that OSS is the future and will prevail against their

counterparts proprietary software in the long run (Volpi, 2019; Noyes, 2013).

Sacks (2015) argues that these forecasts are irrelevant for the tech industry.

According to him, developers of proprietary and open-source software would not

compete in the same market, even if there were overlaps in certain target markets.

However, the underlying nature of the open-source development process leads to

a self-selection process in which proprietary source developers differentiate their

product in order to focus on the market they create, which is not the target of

OSS. Thus, the vendors of proprietary software are in tougher competition with

each other than with the open-source software vendors. It should therefore be

assumed that both development approaches will continue to coexist in the long

term as long as the underlying markets targeted by the two methods continue to

exist (Sacks, 2015).

To understand these markets, it is necessary to understand the product itself at

first. Software is perceived by many individuals as a product that can be bought

and owned just like any other physical good. However, software is more than just

owning a copy of a product that can be used legally (Christl, 2008). This statement

also helps with another aspect: In discussions about open-source software

development, the following question is often raised: How is it still possible to earn

money with that, although the source code is made freely available to everyone.

Vendors of proprietary software like to create the illusion that the offered software

is commercial, conventional and tradeable. Thus, the character of a physical good

is suggested, even if software is bound to associated hardware. Many other

examples exist of how software can be "personalized" if it is originally only a copy

of a unique set of computer-readable instructions, access to which is granted by

means of a unique (license) key. These basic concepts (coming from the

proprietary niche) are softened by open-source developers. The collaborative

 14

(partly free of charge) production of source code, the continuous improvement and

provision of this software is in strong contrast to that of proprietary software.

Dealing with OS, the main sources of income, besides sales, are long-term support,

consulting and deployment. (Christl, 2008).

To be aware of these opposites, the following table (Table 2: Economic aspects)

highlights and describes selected aspects for economic analysis.

Aspect 1: Total cost of production. From a software vendor's perspective, the total

cost of production in the short term are a useful starting point for dividing total

costs into two categories: fixed costs that cannot be changed in the short term

and variable costs that can be changed in the short term (Khan Academy, n.d.). A

common method is to keep part of the hardware and software development in-

house and outsource or contract out the rest. What cause the companies to do this

and how this is done is explained in the following table (Table 2: Economic aspects)

(Pighin, 2013).

Aspect 2: Total cost of ownership. The term Total Cost of Ownership (TCO) was

first used in 1987 to help buyers determine both the direct and indirect costs of a

system. Within software development, the term is understood to include the costs

of developing, improving, maintaining and supporting an application (PSL Corp,

n.d.). Even if one is strictly speaking only the "holder" of the software and not the

“owner”, this concept is often used to compare the costs of different software

options and helps in the selection process.

Even if proprietary and open are only production models, certain approaches of a

underlaying business model are assumed.

 15

Table 2: Economic aspects

Aspect Proprietary software Open-source software

Total cost

of

production

(TCP)

Campbell-Kelly and Garcia-

Swartz (2010) classified two

types of investments in the

production process of software

development, which are

common in proprietary

companies: (1) Investments in

R&D and (2) acquisitions. The

latter is used to promote in-

house software development,

where the related know-how of

often smaller companies is

integrated into development

process.

In general research, the focus in

economic analysis is

understandably mainly on open

source.

The assumption in the early

emergence of open-source

projects, that talents, due to the

large community involved, are

freely available, is no longer

valid. Nowadays, OS developers

make it partly similar to PS

vendors (as described). Leading

OSS companies, e.g., Red Hat,

are constantly acquiring smaller

companies in order to use both

the software itself and the

software-producing team of the

acquired company and to

integrate them into their own

team (Campbell-Kelly et al.,

2010). The counter-financing of

this venture does not necessarily

have to come from the sale of

licenses. Cost recovery for

creating and maintaining open-

source software can be achieved

by selling services such as

training, technical support or

consulting (Germain, 2013).

 16

Total cost

of

ownership

(TCO)

When it comes to TCO, Lin

(2008) sees the main point of

purchase cost of proprietary

software as the decisive factor

from a company's point of view.

Even though companies may

have different levels of

qualification with regard to

proprietary software, all

companies trust the

manufacturer for new versions

and upgrades.

An example: With an increasing

number of servers, proprietary

solutions become more and

more expensive. First, many

proprietary systems (including

Microsoft) sell pro-client

licenses; this means that even if

the hardware can support more

clients, one must pay more to

actually use the purchased

hardware. Second, one has to

pay more for proprietary

systems if there is a need for

more computers (FOSS

technologies, n.d.).

A now outdated study suggests

that the answer to the question

of lower costs distributed over

the life cycle of proprietary or

open-source solutions is not easy

to give (Thomas, 2004). With the

adaptation of an open-source

software solution, the costs

seem lower at first glance. From

case to case one “saves" license

fees, which allow "try before you

buy" (Roy, 2006). At second

glance, however, it becomes

clear that this approach does not

go far enough. With the

implementation of open-source

into the corporate IT-ecosystem

many sunk costs are incurred.

Lin (2008) provides empirical

evidence that the total cost of

open-source software

deployment varies from

company to company and

depends largely on the skills and

expertise of the IT staff in an

organization. Thus, if a

company's IT staff actively

contributes to an open-source

project, the support costs for this

software are intuitively very low.

 17

An example (continued): In

contrast to the proprietary

solution mentioned above, most

GNU/Linux distributions allow

the installation of an unlimited

number of copies at no additional

cost and there is no performance

limit built into the software.

There may be a fee for additional

support from the manufacturers

and more trained personnel may

be needed (FOSS technologies,

n.d.).

The comparison of these results with those of other studies confirms that the

integration of proprietary software does not necessarily have to be more

expensive for the customer than open-source software. Especially commercial

open-source solutions have lower acquisition costs but require professional (and

therefore inevitably expensive) support, either internally or externally (Ahmed,

2020).

As selection criteria the above-mentioned aspects, which should naturally be

weighted differently from company to company and adapted to individual needs,

should be used. A general statement on this matter is therefore difficult to make.

 18

5 Proprietary and Open Software in the Big 3 Techs
Companies

The acceptance of open source or the commitment to the proprietary software

approach can best be analyzed at the leading tech companies. Apple, Microsoft

and Google play a dominant role in their markets as well as their behavior has an

effect on the attitudes of small and medium-sized companies. This section deals

with the approach to developing software and its distribution.

5.1 Apple

When Apple announced in late 2015 that its programming language Swift will be

available as open source, the developer community was rightly pleased. At the

same time, the Apple’s developer-website pompously stated that Apple was “the

first major company to make Open Source development a key part of its software

strategy, continues to use and release significant quantities of open source

software” (Steven Vaughan-Nichols, 2015). This statement has disappeared from

the current official website for undetermined reasons. Vaughan-Nichols (2015)

explains his concerns about this claim in a blog post from ZDNET and even

describes it as “ill-thought out”. The elaborations from the previously mentioned

blog post and an article in PM Network suggest that, although Apple has been using

the open source approach for years, they were the first major company to take

advantage of it for monetary gain and subsequently for profit (Rockwood, 2016).

The thesis of S. Vaughan-Nichols (2015) stating that Apple is relatively slow with

the publication of the source code can also be proven by the operating system “Big

Sur” released in 2020. On the website, where the operating systems macOS are

offered for download, exactly the latest version number 11.0 is missing (General

availability: November 12, 2020; observation date: December 17, 2020,

https://opensource.apple.com).

 19

To clarify the controversy described above, it is still necessary to determine why

Apple presents itself as a true open-source vendor. From a business or advertising

point of view, the company naturally wants to polish up its image and present itself

as a company that clearly identifies with the open-source developer community

(Asay, 2016). However, there is no significant scientific evidence from the product-

specific side. On the internet portal Quora Apple's strategy is seen in the fact that

it is pure a tactic to provide the source code of some projects open source in order

to save maintenance by patches and other support services (Lambert, 2016).

Even though Apple generates most of its revenue from hardware sales, there are

also several proprietary software solutions in the product portfolio. For example,

the IT company uses proprietary diagnostic tools software to limit third-party

repair of MacBooks. On the one hand, the goal is to ensure security on the part of

Apple, on the other hand, critics claim that the company is trying to control the

market for repairs and that customers are therefore driven to buy completely new

products (Statt, 2018).

5.2 Microsoft

As already described in paragraph 2.2.1 about the historical background of open

source, in the late 1970s / early 1980s computer manufacturers began to keep

their source code closed and to charge a fee for access. The beginning of the era

of proprietary software was initiated. In this environment, Microsoft became a

successful pioneer of the proprietary and commercial development and set up the

distribution model for software without hardware. As of today, nearly all of

Microsoft's software is proprietary, including the Windows operating system family

and Microsoft Office (“Proprietary Software Definition", n.d.).

 20

To understand Microsoft's commitment to proprietary and commercial software

development at that time, there should not be asked for the reasons for choosing

the proprietary way. Rather, why not open source? At that time, the open-source

strategy was seen as a threat to their business model by the Microsoft CEOs,

represented here by Bill Gates and Steve Ballmer (Niu, 2019). As already described

in the comparison, when distributing proprietary software, large companies tend

to provoke a certain dependency on their customers - the so-called vendor lock-in

effect. This requires an enormous management effort, strategic game-play,

patenting and branding, and flashy product launch events (Ferguson, 2005). The

story of Windows Vista is a very striking example of the monetary dimensions

involved in a non-market-ready development. According to the American business

magazine Bloomberg, around 10,000 employees were simultaneously working on

this project, which cost about ten billion US dollars (Ricadela, 2008).

Microsoft's drastic attitude towards open source has changed gradually in recent

years. Since the former CEO Steve Ballmer described Linux as "a cancer that

attaches itself in an intellectual property sense to everything it touches" (Greene,

2001), the company has changed direction so that they recently admitted it was

wrong about open source (Warren, 2020).

By becoming the largest single contributor to projects worldwide, beating

Facebook, Docker, Google, Apache and many others, Microsoft today is a big player

in the open-source software area. Microsoft has also gradually introduced the in-

house open-source strategy in recent years, including open sourcing PowerShell

(Calvo, 2016) ,Visual Studio code (VScodium, n.d.) and even the original

JavaScript engine from Microsoft Edge (Gaurav & Adalberto, 2015).

By overtaking GitHub, a large code repository mainly for open-source developers

Microsoft seems to have put aside its indifference with open source (Warren,

2018).

 21

Even market-dominant companies such as Microsoft, which have been reluctant to

open their proprietary innovations to users and competitors in the past, have

recognized that they must coexist with the open-source innovation model in order

to be successful (Rao, Klein & Chandra, 2011).

5.3 Google

Besides Microsoft, Google is also emerging as a big player in the field of open

source software development (Asay, 2017).

Google is a major user of open-source software both in its internal systems and in

its online services, which provide Google with substantial revenues from Internet

advertising. As such, Google has therefore a strong incentive to contribute to OSS

innovation. Google thus fits well with Von Hippel's (2006) definition of lead users

as members of a user population that has two distinguishing features: (1) they are

ahead of an important market trend and currently working on solutions long before

many users need them; (2) they expect a relatively high benefit when they get a

solution for their needs, and therefore they innovate. For this reason, Google also

takes a leading role in the Open Handset Alliance organization, along with other

leading tech companies and mobile carriers. They are committed to promoting an

open Linux-based platform that provides the development of diverse but

compatible mobile phone applications. Google calls this platform "Android". The

objective is to accelerate the ability of customers to use the internet for software,

content and services on the smartphone in the same way as they do from their

PCs (Rao et al., 2011).

Just like the PC operating systems, it took a long way for mobile operating systems

to get to get their current form. Important for the differentiation at the abundance

of mobile operating systems is the availability of the option to use third-party

applications. The mobile operating system Android initiated by Google guarantees

 22

exactly this level of commitment, together with middleware and key applications

for use on mobile devices (Dhir et al., 2017). With a 2018 market share of over

85% of the global mobile operating system market, Android also strengthens

Google's main business, the advertising business (Ruchi, 2018).

With Chrome, Google also has the most popular browser worldwide in its

proprietary product portfolio, which is based on the open-source project

Chromium. Google developers add their own proprietary code to Chromium, which

creates services such as the browser's automatic update mechanism and features

like the tabbed user experience to create the actual Chrome browser and to border

with it from other Chromium-based competitors like Opera etc., what can be

considered a competitive advantage (Keizer, 2020).

Based on the existing literature and the latest research, it is clear that Google has

managed to cleverly combine the advantages and disadvantages of open source

and proprietary development approaches.

 23

6 The Distribution of Proprietary and Open-source
Software

In information technology, the relevance of different concepts is often measured

by how widely spread and established certain products are. To this sense different

markets are specified in the following section, in order to work out, how the

proprietary and open-source concepts are used within it. Existing research

recognize the crucial role that the computer operating system market, the mobile

operating system market and the web browser market play in this meaning.

Computer operating system market. The market for computer operating systems

has always been dominated by Microsoft and its proprietary product Windows.

According to Statcounter, almost three quarters of all PCs worldwide have a version

of Windows installed (StatCounter Global Stats, 2020b). Despite the mostly

proprietary access to Microsoft's operating system, there are also some open-

source approaches, such as providing a complete Linux kernel for the Windows

subsystem (Ostler, 2020). This also leads to the most prominent representative of

the open-source software movement: Linux. With a market share of about 2%, it

is not the main competitor of Windows, but in its development, it follows a

completely different path (StatCounter Global Stats, 2020b). Linux is offered as

open-source software and allows the free code to be viewed, edited and - for those

with certain skill-sets - to contribute it (Dhir/Dhir, 2017).

Mobile operating system market. In contrast to the market segment mentioned

above, open-source technology is more strongly represented here. In this context

a mobile OS (operating system) runs on smartphones, tablets or as a digital

assistant. It is also crucial to determine whether third-party applications are

accepted and allowed by the respective OS. The second most widespread

participants in this market are understandably contrary in their philosophy. While

Apple's IOS is a proprietary product with single open-source components, Android

has a completely open code (Dhir/Dhir, 2017). Other than on the computer OS

 24

market, the open-source representative has had a dominant position in this market

since 2013 (StatCounter Global Stats, 2020c).

Web browser market. The important market for the supremacy as a browser has

always been considered highly competitive. No less than six providers are in direct

competition with each other. Even if the market share is "only" about 4% in 2020,

Mozilla's Firefox browser follows an interesting course (StatCounter Global Stats,

2020a). Firefox was designed for simplicity, security, and extensibility and this was

largely made possible by its open-source concept. This was also the big success.

Firefox was the long-time competitor of Microsoft's proprietary Internet Explorer,

until Google's Chrome, which (as mentioned in section 5.3) has open-source

elements of its own, became widely accepted in 2012.

The above-mentioned markets relate primarily to private customer business. The

spread of proprietary and open-source software in companies as enterprise

software is highlighted by Vaughan-Nichols (2015) in his article. The result of his

interpretation of a study of an open-source software logistics and service provider

is quite interesting. According to this study, open-source software is already used

by a majority of all companies. However, according to the survey, companies still

have a lack of formal OSS management guidelines. Additionally there is something

like "blind trust" in the further development of open-source business software

(Vaughan-Nichols, 2015). More recent studies, especially those commissioned by

the software company Red Hat, come to a not so clear, but similar result. It should

be noted that the choice between the concepts goes beyond the cost factor.

Organizations that use enterprise open source see a variety of benefits: The IT

executives surveyed stated that the higher quality of software was the main reason

they chose open source over proprietary, followed by better security and lower

total cost of ownership (Red Hat, 2020).

All in all, the open-source concept has long since arrived at the broad masses and

in some areas (as described business software) displaces its counterpart.

 25

7 Conclusion and Discussion

Although in early years open source was considered only a niche, the concept of

free source code and unrestricted customization became established in the

mainstream. It has now become an important part of modern application

development. Surveys show that across industries, more than half of mainstream

companies are using or have plans to use open-source software in business.

They run parallel to the proprietary solutions already implemented (Litzel, 2019).

Leading IT companies are responding to this phenomenon by continuously

integrating open-source elements into their software solutions. Despite all this,

they partly stick to the proprietary mindset and make clever use of the

advantages. Advantages result from an economic but also from a product-

specific perspective. The division into two worlds of development model

established in the 1980s and subsequent years has long since disappeared.

From today's perspective, the reality that there is an option to reveal source

code to users has the potential to conquer their policies set by proprietary

software and creates its very own specialized niche within the software

ecosystem. Despite all this, software providers with different development

strategies do not necessarily compete in the same market. The product offered

does not understand itself as such and thus appeals to different target groups.

Therefore, in the end it is irrelevant which form of development will prevail. In

the long term, the advantages of each model complement each other, which

suggests that they will coexist together for quite some time. For the consumer,

this outcome is only advantageous: reasonable price and high degree of

freedom. The decision criterion is a combination, a trade-off. The questions that

will arise for software developers (without a clear inclination) in the future are

which philosophy to be mainly preferred and to what degree: proprietary or open

source?

 26

8 Bibliography

Ahmed, Irfan (2020, April 29). Commercial Proprietary Software vs Open Source -
Which is Better? https://www.astera.com/type/blog/why-proprietary-software-
can-be-more-cost-effective-than-open-source/, accessed December 10, 2020

Aioma.com (2019, March 1). Die Geschichte und Zukunft von Open-Source Software.
https://www.aioma.com/de/blog/open-source-software-geschichte-zukunft,
accessed October 30, 2020

Asay, Matt (2016, November 9). Apple is doubling down on open source.
https://www.techrepublic.com/article/apple-is-doubling-down-on-open-source/,
accessed November 25, 2020

Asay, Matt (2017, October 30). Why Microsoft and Google are now leading the open
source revolution. https://www.techrepublic.com/article/why-microsoft-and-
google-are-now-leading-the-open-source-revolution/, accessed November 26,
2020

Bitzer, Jürgen/Schrettl, Wolfram/Schröder, Philipp J. H. (2007). Intrinsic motivation in
open source software development. Journal of Comparative Economics, 35(1),
160–169. DOI: 10.1016/j.jce.2006.10.001

Calvo, Angel (2016, August 17). Windows PowerShell is now “PowerShell”: An Open
Source Project with Linux support – How did we do it?
https://devblogs.microsoft.com/powershell/windows-powershell-is-now-
powershell-an-open-source-project-with-linux-support-how-did-we-do-it/,
accessed November 26, 2020

Campbell-Kelly, Martin/Garcia-Swartz, Daniel D. (2010). The Move to the Middle:
Convergence of the Open-Source and Proprietary Software Industries.
International Journal of the Economics of Business, 17(2), 223–252. DOI:
10.1080/13571516.2010.483091

Christl, Arnulf (2008). Free Software and Open Source Business Models. In Hall, G.
Brent/Leahy, Michael G. (Eds.), Open Source Approaches in Spatial Data
Handling (21–48). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI:
10.1007/978-3-540-74831-1_2

Dalle, Jean-michel/Normale, Ecole/Cachan, Suprieure/Jullien, Nicolas (2002). Open-
Source vs. Proprietary Software.

Dhir, Swati/Dhir, Sanjay (2017). Adoption of open-source software versus proprietary
software: An exploratory study. Strategic Change, 26(4), 363–371. DOI:
10.1002/jsc.2137

Ferguson, Charles (2005). How Linux Could Overthrow Microsoft. Technology Review,
108(6), 64–69.

Finkel, Lonnie (2017, December 7). How To Protect Your Company’s Software Assets.
https://finkellawgroup.com/protect-company-software-assets/, accessed
November 5, 2020

 27

fosstechnologies.weebly.com (n.d.). Total Cost Of Ownership (TCO).
http://fosstechnologies.weebly.com/total-cost-of-ownership-tco.html, accessed
December 9, 2020

Gaurav, Seth/Adalberto, Foresti (2015, December 5). Microsoft Edge’s JavaScript
engine to go open-source.
https://blogs.windows.com/msedgedev/2015/12/05/open-source-chakra-core/,
accessed November 26, 2020

Germain, Jack M. (2013, November 5). FOSS in the Enterprise: To Pay or Not to Pay?
https://linuxinsider.com/story/foss-in-the-enterprise-to-pay-or-not-to-pay-
79341.html, accessed December 9, 2020

Greene, Thomas C. (2001, June 2). Ballmer: “Linux is a cancer.”
https://www.theregister.com/2001/06/02/ballmer_linux_is_a_cancer/,
accessed November 26, 2020

gs.statcounter.com (2020a). Browser Market Share Worldwide.
https://gs.statcounter.com/browser-market-share, accessed December 3, 2020

gs.statcounter.com (2020b). Desktop Operating System Market Share Worldwide.
https://gs.statcounter.com/os-market-share/desktop/worldwide, accessed
December 10, 2020

gs.statcounter.com (2020c). Mobile & Tablet Operating System Market Share
Worldwide. https://gs.statcounter.com/os-market-share/mobile-
tablet/worldwide/, accessed December 3, 2020

Hars, Alexander/Ou, Shaosong (2002). Working for Free? Motivations for Participating
in Open-Source Projects. International Journal of Electronic Commerce, 6(3), 25–
39. DOI: 10.1080/10864415.2002.11044241

Hayon, Dominik (2019, August 29). Mozilla legt offizielle Zahlen vor: So viele
Menschen nutzen Firefox. https://www.chip.de/news/Mozilla-legt-offizielle-
Zahlen-offen-So-viele-Menschen-nutzen-Firefox_147510433.html, accessed
November 27, 2020

Henry, Matthew (2020, July 24). Linux market share grows 210% in 5 months.
https://www.esop.pt/en/destaque/linux-market-share-grows-210-5-months,
accessed November 27, 2020

Hertel, Guido/Niedner, Sven/Herrmann, Stefanie (2003). Motivation of software
developers in Open Source projects: an Internet-based survey of contributors to
the Linux kernel. Research Policy, 32(7), 1159–1177.

Kazmeyer, Milton (n.d.). Disadvantages of Proprietary Software.
https://smallbusiness.chron.com/disadvantages-proprietary-software-
65430.html, accessed November 13, 2020

Keizer, Gregg (2020). Google’s Chromium browser explained: Chrome is the most
popular browser in the world, but there would be no Chrome without Chromium,
the open-source project that underpins it. Here’s what Chromium is, where you
can download it, how it shapes your online experience, and -- if you hate it --
how to get rid of it. Computerworld (Online Only), 1–1.

 28

khanacademy.org (n.d.). The structure of costs in the short run (article).
https://www.khanacademy.org/economics-finance-
domain/microeconomics/firm-economic-profit/average-costs-margin-rev/a/the-
structure-of-costs-in-the-short-run-cnx, accessed December 10, 2020

Lambert, Terry (2016, August 9). Why does Apple open-source some of their projects?
https://www.quora.com/Why-does-Apple-open-source-some-of-their-projects,
accessed November 25, 2020

Lin, Lihui (2008). Impact of user skills and network effects on the competition between
open source and proprietary software. Market Transformation in a Networked
Global Economy, 7(1), 68–81. DOI: 10.1016/j.elerap.2007.01.003

Litzel, Nico (2019, September 3). Open-Source-Software verbreitet sich zunehmend.
https://www.bigdata-insider.de/open-source-software-verbreitet-sich-
zunehmend-a-860469/, accessed December 10, 2020

Mendonca, Lenny T./Sutton, Robert (2008). An interview with Mitchell Baker. McKinsey
Quarterly, (2), 12–13.

Mizinska, Marta (2019, December 18). 5 Vendor Lock-In Strategies for Your Online
Business. http://straal.com/5-vendor-lock-in-strategies-for-your-online-
business/, accessed November 13, 2020

Mühlig, Jan (2005). Open Source und Usability. Open Source Jahrbuch 2005, 87.

neuron.csie.ntust.edu.tw (n.d.). Proprietary Software Definition.
http://neuron.csie.ntust.edu.tw/homework/94/ComputerIntro/Homework1/B94
15002/propdef.htm, accessed November 26, 2020

Niu, Evav (2019, January 19). 19 Years After Bill Gates Stepped Down as Microsoft
CEO, These 2 Successors Have Left Their Marks.
https://www.fool.com/investing/2019/01/19/19-years-after-bill-gates-stepped-
down-as-microsof.aspx, accessed November 26, 2020

Noyes, Katherine (2013, April 17). Open source is taking over the software world,
survey says. https://www.pcworld.com/article/2035651/open-source-is-taking-
over-the-software-world-survey-says.html, accessed October 29, 2020

os2hq.com (n.d.). Learnings form Linux.
http://www.os2hq.com/archives/linmemo1.htm, accessed October 29, 2020

Ostler, Ulrike (2020, July 6). So viel Open Source steckt in Windows.
https://www.datacenter-insider.de/so-viel-open-source-steckt-in-windows-a-
945359/, accessed December 3, 2020

Pescador, Rachel (2020, January 27). Can Open Source Software Save You From
Vendor Lock-in? https://www.percona.com/blog/2020/01/27/can-open-source-
software-save-you-from-vendor-lock-in/, accessed November 13, 2020

Pighin, Anthony (2013, May 23). Software Development: Fixed Cost or Opportunity
Cost? https://www.embedded-computing.com/embedded-computing-
design/software-development-fixed-cost-or-opportunity-cost, accessed
December 10, 2020

 29

pslcorp.com (n.d.). Optimizing the Total Cost of Ownership on an outsourcing software
development project - Blog - PSL Corp. https://www.pslcorp.com/software-
development/optimizing-total-cost-of-ownership-on-an-outsourcing-software-
development-project/, accessed December 10, 2020

Rao, PM/Klein, Joseph A./Chandra, Ramdas (2011). Innovation without property rights
and property rights without innovation: recent developments in the ICT sector.
Advances in Competitiveness Research, 19(1/2), 83–99.

Raymond, Eric S. (2015, April 8). The Jargon File.
http://www.catb.org/~esr/jargon/html/P/proprietary.html, accessed November
12, 2020

redhat.com (2020, February 17). The State of Enterprise Open Source 2020:
Enterprise open source use rises, proprietary software declines.
https://www.redhat.com/en/blog/state-enterprise-open-source-2020-
enterprise-open-source-use-rises-proprietary-software-declines, accessed
December 10, 2020

redhat.com (n.d.). What is open source? https://www.redhat.com/en/topics/open-
source/what-is-open-source, accessed November 13, 2020

Ricadela, Aaron (2008). Microsoft: What Cost the Vista Fiasco? Bloomberg.Com of June
11, 2008. https://www.bloomberg.com/news/articles/2008-06-11/microsoft-
what-cost-the-vista-fiasco-businessweek-business-news-stock-market-and-
financial-advice, accessed November 25, 2020

Rockwood, Kate (2016). Open for Business. PM Network, 30(4), 12–13.

Roy, Rick (2006). Open Source’s Mainstream Future. Insurance & Technology, 31(2),
37.

Ruchi, Gupta (2018). Google Android Will Remain on Top for a Long Time.
https://marketrealist.com/2019/08/googles-android-will-remain-top-long-
time/, accessed November 27, 2020

Ryan, Richard M./Deci, Edward L. (2000). Intrinsic and extrinsic motivations: Classic
definitions and new directions. Contemporary Educational Psychology, 25(1), 54–
67.

Sacks, Michael (2015). Competition Between Open Source and Proprietary Software:
Strategies for Survival. Journal of Management Information Systems, 32(3),
268–295. DOI: 10.1080/07421222.2015.1099391

Schlaefli, Samuel (2014, December 9). Die Motivation der Open-Source-Community.
https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/12/die-
motivation-der-open-source-community.html, accessed October 30, 2020

Singh, Vivek (2018, January 10). A Brief History Of Open Source.
https://medium.com/gitcoin/a-brief-history-of-open-source-3928cb451767,
accessed October 30, 2020

Spaeth, Sebastian/von Krogh, Georg/He, Fang (2015). Research note—perceived firm
attributes and intrinsic motivation in sponsored open source software projects.
Information Systems Research, 26(1), 224–237.

 30

Stallman, Richard (2002). Free software, free society: Selected essays of Richard M.
Stallman. Lulu. com.

Stallman, Richard M. (1994). Why Software Should Not Have Owners., Technos:
quarterly for education&technology.(vol. 3), 24–26.

Statt, Nick (2018, October 4). Apple is using proprietary software to lock MacBook
Pros and iMac Pros from third-party repairs.
https://www.theverge.com/2018/10/4/17938820/apple-macbook-pro-imac-
pro-third-party-repair-lock-out-software, accessed November 25, 2020

Thomas, Daniel (2004). Study finds Linux has higher total cost of ownership
thanWindows. Computer Weekly, 18–18.

Thompson, Andrew (2020, June 18). What is proprietary software and how does it
work? http://entrepreneurhandbook.co.uk/proprietary-software/, accessed
November 6, 2020

Vaughan-Nichols, Steven (2015, December 8). Was Apple the first major open-source
company? Not even close. https://www.zdnet.com/article/apple-was-the-first-
major-open-source-company/, accessed November 25, 2020

Vaughan-Nichols, Steven J. (2015, April 16). It’s an open-source world: 78 percent of
companies run open-source software. https://www.zdnet.com/article/its-an-
open-source-world-78-percent-of-companies-run-open-source-software/,
accessed December 3, 2020

Volpi, Mike (2019, January 12). How open-source software took over the world |
TechCrunch. https://techcrunch.com/2019/01/12/how-open-source-software-
took-over-the-
world/?guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_si
g=AQAAACfMK8yJC01zY0ZbxBzluZvr2IK-UjnODNj8co6NIXw2ksuTqiAvo-
Xq3j6gfXpyRc2tmMrdWEEzEvooa96_LpBJvlhKE7fbiOz0o3F6e1PCKUWpr83r7J9Z
LBJTQSXwN_MRjaysaIEi97tXGNo5_DMQJml625sbN_0VS6nbih_6&guccounter=2
, accessed December 14, 2020

Von Hippel, Eric (2006). Democratizing innovation. the MIT Press.

vscodium.com (n.d.). VSCodium - Open Source Binaries of VSCode.
https://vscodium.com/, accessed November 27, 2020

Warren, Tom (2018, October 26). Microsoft completes GitHub acquisition.
https://www.theverge.com/2018/10/26/17954714/microsoft-github-deal-
acquisition-complete, accessed November 26, 2020

Warren, Tom (2020, May 18). Microsoft: we were wrong about open source.
https://www.theverge.com/2020/5/18/21262103/microsoft-open-source-linux-
history-wrong-statement, accessed November 27, 2020

WebCampus (2017, September 18). Open Source vs. Proprietäre Systeme - Was ist
das Richtige für mich? - WebCampus - E-Learning Komplettlösung.
https://www.webcampus.de/blog/142/open-source-vs-proprietaere-systeme-
was-ist-das-richtige-fuer-mich, accessed November 5, 2020

 31

9 Appendix

(Gantt chart from October 8, 2020 to January 28, 2021)

