
JavaFX/FXML CookBook (Nutshell Examples)

Manuel Schwarzer

February 6, 2021

1



Contents

1 Introduction 3
1.1 BSF4ooRexx . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 JavaFX/FXML . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 SceneBuilder . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Installation 5
2.1 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 ooRexx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 BSF4ooRexx . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 JavaFX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 SceneBuilder . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 DB Browser (SQLite) . . . . . . . . . . . . . . . . . . . . . . 7

3 Nutshell Examples 8
3.1 My first GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 My first GUI with CSS . . . . . . . . . . . . . . . . . . . . . . 11
3.3 SQLite - JDBC . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 JFoenix - Class . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Multiple Windows . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Conclusion 32

5 Outlook 32

A
My first GUI 34

B
My first GUI with CSS 36

C
SQLite - JDBC 37

D
JFoenix - Class 38

E
Multiple Windows 41

2



Abstract

JavaFX and SceneBuilder combined are a powerful approach to set
up simple or complex GUIs which can be used unchanged on Windows,
Mac or Linux. BSF4ooRexx acts therefore like a bridge between two
worlds of different programming languages, ooRexx and Java. Stand-
alone nutshell examples will demonstrate how a GUI can be created
and how JavaFX can be used by ooRexx.

1 Introduction

This paper will give a brief overview about different components about
JavaFX and FXML. At the beginning, more specific in Chapter 1 it will
be given some information about the various software components that will
be used. Furthermore, in Chapter 2, there is an installation guide to show
how these components shall be installed. Moreover, in Chapter 3, there are
some serious nutshell examples to reveal the true strength about JavaFX
and FXML.

1.1 BSF4ooRexx

BSF4ooRexx (stands for: BeanScriptingFramework for ooRexx) is one of
the major parts to use JavaFX and FXML in ooRexx. BSF4ooRexx acts
like a translator who translates from on language into another one. So ba-
sically it translates Java code to make it usable in ooRexx and vice versa.
Furthermore, with BSF4ooRexx the whole Java-Class-Collection will be us-
able. How to do so will be shown later.
BSF4Rexx was developed to act like a bridge between different kinds of soft-
ware. Mainly to cover Java methods so that these methods could be used
platform independent. This goal was achieved in January 2000 by a proof-
of-concept study at the University of Essen [7]. After years of development
BSF4ooRexx with its ooRexx package “BSF.CLS” was published. With this
package it is possible to use Java classes like they were ooRexx classes [7].

1.2 JavaFX/FXML

JavaFX is a next generation client application platform for desktop, mobile
and embedded systems built on Java. It is a collaborative effort by many
individuals and companies with the goal of producing a modern, efficient,
and fully featured toolkit for developing rich client application [1].
FXML in addition, is an XML-based user interface markup language created
by Oracle for defining the user interface of a JavaFX application. FXML
presents an alternative to designing user interfaces using procedural code,
and allows for abstracting program design from program logic [2]. Fur-
thermore, with JavaFX and especially with FXML, it is possible do use an

3



interface platform independent. So, if an interface is designed on a Microsoft
based platform, it is possible to use the same Graphical User Interface writ-
ten in FXML, on an other platform, which contains JavaFX as well [5].
These two, JavaFX and FXML, combined will led to an easier way to design
and create Graphical User Interfaces. In combination with the application
“SceneBuilder” ,which will be explained in the next section of this Chapter,
it is getting even easier.

1.3 SceneBuilder

SceneBuilder is an open source application which is supported by Gluon [3].
With SceneBuilder it is a lot easier to design and create many different,
complex or simple, Graphical User Interfaces. Within SceneBuilder there
are three different areas.
First, there is an area where all kinds of usable stuff, which can be placed on
a GUI, is located. Second, in the middle of the screen, between the first and
the third area, there is the working area, where you can add something like
a button. This can be simply done via drag and drop. Third, on the right
side there is an area where you can gather information about the properties
of the previously added component. All kinds of information will be shown
there, for example the font size of a button, or the color of the text within
the button. These three areas can be seen in figure 1 underneath.

Figure 1: Button added

With SceneBuilder it is the most efficient way to design and create a GUI,
because you can add/drop components via drag and drop, furthermore, you
can use the created GUI immediately within your ooRexx source code. More

4



details about this in Chapter 3 where a short example of a GUI creation will
be shown step by step.

2 Installation

In this section, it will be shown what kind of software components will be
needed for this paper. In general, there are four major components that are
required and two optional components.
First, it is required to make sure that Java itself is installed on the operating
system. Second, ooRexx must be installed. After that, BSF4ooRexx can
be installed. Furthermore, JavaFX and SceneBuilder are required. Last, an
optional software component, which will help with the interaction between
ooRexx/Java and a database will be shown.

2.1 Java

First of all, Java itself has to be downloaded and installed. If it is not already
installed on the system, please download it. Make sure that it matches the
same bit rate as ooRexx. In this paper Java version “1.8.0 191 64-bit” was
used. It can be found here:
https : //www.oracle.com/java/technologies/javase/javase8− archive−
downloads.html. Within this archive download JDK 8u191 with the re-
quired bit rate, mostly 64-bit.

2.2 ooRexx

If it is not already installed on your operating system, ooRexx must be
downloaded and installed too. For this paper, ooRexx beta version 5.0.0
r11982 was used. The required data can be downloaded here:
https : //sourceforge.net/projects/oorexx/files/oorexx/. It is highly rec-
ommended to install the same bit rate (32-bit or 64-bit) as the operating
system has and especially as the version of Java has, otherwise some error
can occur.

2.3 BSF4ooRexx

After the successful installation of Java and ooRexx, the associated Bean
Scripting Framework has to be downloaded and installed. The required files
can be found here: https : //sourceforge.net/projects/bsf4oorexx/files/.
In this paper, BSF4ooRexx version “bsf4ooRexx-v641-20200130-bin” was
used. After following these steps, it will be possible to use Java in ooRexx
and vice versa:

5

https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html
https://sourceforge.net/projects/oorexx/files/oorexx/
https://sourceforge.net/projects/bsf4oorexx/files/


1. Visit https://sourceforge.net/projects/bsf4oorexx/files/

2. Download the latest version of BSF4ooRexx

3. Unzip the downloaded archive

4. Navigate into the unzipped subdirectory “bsf4oorexx/install/windows”

5. Double click install.cmd

Now, it is possible to use Java classes within ooRexx. Furthermore, with
BSF4ooRexx it is possible to automate business process and to interact with
other applications like Microsoft Word and so on [7]. But, that is not the
focus of this paper.

2.4 JavaFX

JavaFX is one of the main parts to generate Graphical User Interfaces.
Nonetheless, nothing additional must be downloaded, stored or implemented.
JavaFX comes with JDK 8. So, if a different version of JDK will be used,
take care of the fact that JavaFX is not always implemented by default.
Nowadays, many different JavaFX approaches take place, since Oracle does
not fully support JavaFX within their JDK packages any more. Since Oracle
and JavaFX split up, OpenJFX and its open-source community take care of
JavaFX and its latest versions [6].

2.5 SceneBuilder

The last required software component is “SceneBuilder”. It is an application
that will help with the designing process of a GUI application, because
the designing process will get more efficient via drag and drop functions.
Moreover, not a single line of code must be written to create a GUI by
yourself. To get SceneBuilder follow these steps:

1. Visit https://gluonhq.com/products/scene-builder/

2. Download the latest version of SceneBuilder (In this scenario, version
11.0.0 is used)

3. Double click the downloaded executable file

4. Follow the instractions

As can be seen at the homepage of Gluon, it is recommended to download
version 8.5 of SceneBuilder if Java 8 is used [3]. But there are some troubles
between modern styling classes of SceneBuilder, like the later explained class
“JFoenix”, and the older version of SceneBuilder. In this paper SceneBuilder
version 11 was used, without any complications.

6

https://gluonhq.com/products/scene-builder/


2.6 DB Browser (SQLite)

In this subsection, an application will be explained, which helps with creat-
ing a database. If it is needed, that apart from the used database in Chapter
3, a new database should be created, DB Browser for SQLlite is one of the
easiest ways to do so. A quick guide of how to use this application will be
explained underneath.
To be able to use DB Browser (SQLite) follow these steps:

1. Visit https://sqlitebrowser.org/dl/

2. Download the latest version of DB Browser for SQLite (In this sce-
nario, version 3.12.0-win64 is used)

3. Double click the downloaded executable file

4. Follow the instractions

After the installation process was successful, open the application. It
should look like figure 2.

Figure 2: DB Browser for SQLite

Now, it is possible to create a new database or to open an existing
one. For testing purpose, the included database within this paper called
“Nutshell-DB.db” can be opened and looked at. To do so click on “Open
Database” and navigate to the example database. Double click the database

7

https://sqlitebrowser.org/dl/


that should be opened. After that, it is possible to browse through the
database’s data, tables and properties. But, for this paper, DB Browser for
SQLite is not necessary, it is only an optional component, which may help
to understand the nutshell example within Chapter 3 a bit more easier.

3 Nutshell Examples

In this section, it will be shown how versatile JavaFX and especially FXML
in combination with ooRexx can be.
First of all, a simple GUI will be created. This should point out how easy
it is to create a GUI without any knowledge about Java. Second, this
example of a GUI will be extended with a styling sheet, called CSS. Third,
a useful example of how to use a database in combination with a GUI and
ooRexx will be shown. Fourth, a comparison between default components
of SceneBuilder and an additionally added class with components will be
shown. Last, a combination of multiple windows and its handling will be
explained.

3.1 My first GUI

In this subsection it will be shown how a short example of a GUI will be
created step by step with SceneBuilder.
First, SceneBuilder has to be started. After the successful start of SceneB-
uilder, three working areas will be shown, like in figure 3 underneath.

Figure 3: SceneBuilder starting screen

As can be seen, the first area mentioned, is the left area with all differ-

8



ent kinds of controls and containers, which will be used to design a GUI.
Followed by the second area, the drag and drop area, where components like
buttons can be placed on. Last but not least, on the right hand side there is
area number three, the properties area, which adjusts every time you click
on a different component within the drag and drop area.
First of all, a container has to be added to the working area in the mid-
dle. This can be an AnchorPane, a VBox or something else. One of these
containers has to be added before other controls can be placed on. These
containers are used to define the size of a GUI. If, for example, an Anchor-
Pane is placed on, the GUI window has the same size as the AnchorPane
displayed on the properties area. Furthermore, this AnchorPane serves as a
container for all components that will be placed on later, which means that
every component added, will be attached to this AnchorPane.

Figure 4: AnchorPane

As can be seen in figure 4, an AnchorPane was added to the drag and
drop area. After this, the creative design of the GUI can be started. Several
buttons, textfields, labels and so on can be added. A short example is shown
in figure 5.

This GUI is one of the simplest ones that can be created. It has one
Label which displays the headline “My first GUI”, one TextField where
something can be written in and a button that can be clicked. As can be
seen, it is possible to adjust all these kinds of components. Furthermore,
no component was selected during the snapshot, so the properties area is
empty.

Every time something is added or dropped , source code will be generated
or deleted in the background. The source code of the GUI can be seen if

9



the saved SceneBuilder file will be reopened via an editor. This could be a
simple notepad or a more complex application like IntelliJ or Eclipse.

Figure 5: My first GUI

After reopening the file, its source code will be displayed like the source
code underneath.

In SceneBuilder everything is based on drag and drop and nicely shaped
objects. But, the GUI itself is written in XML. As already mentioned, every
time a component is added to a container, source code will be generated.
More specific, XML code will be generated.
XML stands for Extensible Markup Language and is a markup language that
defines a set of rules for encoding documents in a format that is both human-
readable and machine-readable [4]. At this point JavaFX and XML get
together to FXML, which is an XML-based user interface markup language
created by Oracle [2].

1 <?xml version="1.0" encoding="UTF-8"?>

2

3 <?import javafx.scene.control.Button?>

4 <?import javafx.scene.control.Label?>

5 <?import javafx.scene.control.TextField?>

6 <?import javafx.scene.layout.AnchorPane?>

7 <?import javafx.scene.text.Font?>

8

9 <AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"

minWidth="-Infinity" prefHeight="400.0" prefWidth="600.0" xmlns="http

://javafx.com/javafx/11.0.1" xmlns:fx="http://javafx.com/fxml/1">

10 <children>

11 <Label alignment="CENTER" layoutX="63.0" layoutY="46.0" prefHeight="

10



44.0" prefWidth="469.0" text="My first GUI" textAlignment="CENTER"

>

12 <font>

13 <Font name="Bauhaus 93" size="48.0" />

14 </font>

15 </Label>

16 <TextField layoutX="169.0" layoutY="159.0" prefHeight="14.0" prefWidth

="263.0" promptText="Write something in here..." />

17 <Button layoutX="265.0" layoutY="251.0" mnemonicParsing="false" text="

Click me!" />

18 </children>

19 </AnchorPane>

Listing 1: XML Code of My first GUI

If these two representations of a GUI will be compared to each other,
the SceneBuilder approach is more convenient and faster than writing source
code by hand. The source code of the main and FXML file can be found
within the Appendix.

3.2 My first GUI with CSS

In the previous subsection, a short example of a GUI creation was explained.
Now, this example will be extended. Every now and then it is needed that
a GUI in general looks more entertainin. There are many different ways to
do so.
One of them is to rewrite the source code, or to redesign the whole GUI
in SceneBuilder. Another way, a more efficient way, is to create a so called
CSS. Cascading Style Sheet, was actually invented for HTML, which is the
base of the World Wide Web [8]. With CSS it is possible to redesign a web
side without a huge change in the source code.
Nowadays, CSS is used in many different aspects. For example in this case,
with CSS it is possible to redesign a GUI without major changes within the
source code. To show this circumstance, only a simple CSS, which is shown
in the code section underneath, was added to “My first GUI”.

1 .root{

2 -fx-background-image: url("background.jpeg");

3 }

4

5 .button {

6 -fx-text-fill: white;

7 -fx-font-family: "Arial Narrow";

8 -fx-font-weight: bold;

9 -fx-background-color: linear-gradient(#61a2b1, #2A5058);

10 -fx-effect: dropshadow( three-pass-box , rgba(0,0,0,0.6) , 5, 0.0 , 0 ,

1 );

11 }

12

13 .label {

11



14 -fx-font-size: 36px;

15 -fx-font-weight: bold;

16 -fx-text-fill: #333333;

17 -fx-effect: dropshadow( gaussian , rgba(255,255,255,0.5) , 0,0,0,1 );

18 }

19 .textfield{

20 -fx-prompt-text-fill: rgba(255,255,255,0.5);

21 }

Listing 2: n vs j css.css

Additionally, it is required to add the line of code “stylesheet = @n vs j css.css′′

in every component that should be changed. This can be seen in within the
source code underneath. The “new” GUI with CSS looks like figure 6.

1 <?xml version="1.0" encoding="UTF-8"?>

2

3 <?import javafx.scene.control.Button?>

4 <?import javafx.scene.control.Label?>

5 <?import javafx.scene.control.TextField?>

6 <?import javafx.scene.layout.AnchorPane?>

7 <?import javafx.scene.text.Font?>

8 <?language rexx?>

9

10 <AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"

minWidth="-Infinity" prefHeight="400.0" prefWidth="600.0" styleClass="

root" stylesheets="@n_vs_j_css.css" xmlns="http://javafx.com/javafx

/11.0.1" xmlns:fx="http://javafx.com/fxml/1">

11 <!-- call Rexx program, its public routine "buttonClicked" is known

afterwards -->

12 <fx:script source="My_first_GUI_controller.rexx" />

13 <children>

14 <Label alignment="CENTER" layoutX="63.0" layoutY="46.0" prefHeight="

44.0" prefWidth="469.0" stylesheets="@n_vs_j_css.css" text="My

first GUI with CSS" textAlignment="CENTER">

15 <font>

16 <Font name="Bauhaus 93" size="48.0" />

17 </font>

18 </Label>

19 <TextField fx:id="textField1" layoutX="169.0" layoutY="159.0"

prefHeight="14.0" prefWidth="263.0" stylesheets="@n_vs_j_css.css"

promptText="Write something in here..." />

20 <Button fx:id="button1" layoutX="265.0" layoutY="251.0"

mnemonicParsing="false" onAction="slotDir=arg(arg()); call

buttonClicked slotDir;" stylesheets="@n_vs_j_css.css" text="Click

me!" />

21 </children>

22 </AnchorPane>

Listing 3: My first GUI CSS.fxml

As it shown in the source code above, every component starting with
the AnchorPane and ending with the Button, every component got the ad-
ditional line of code mentioned above. As a result, the GUI looks more state

12



of the art. As can be seen in figure 6. The main file can be found within
the Appendix.

Figure 6: CSS added

3.3 SQLite - JDBC

In this subsection, a useful way of a GUI in cooperation with a database
will be shown. This database sample combines four different files.

• DB-terminal.fxml (Appendix)

• DB-terminal controller.rexx

• DB-terminal main.rexx

• DatabaseHandler.CLS

To get to the point were a database can be used by a Graphical User
Interface, a so called JDBC-Driver has to be installed. For this example
SQLite-JDBC was used and can be downloaded here:
https://github.com/xerial/sqlite-jdbc/releases. In this example,
sqlite− jdbc− 3.32.3.2.jar was used. Furthermore, this variable must be
declared in the class-path of your operating system.

13

https://github.com/xerial/sqlite-jdbc/releases


To do so, follow the following steps:

1. Press the Windows key on your keyboard

2. Type the word “env”

3. Press enter

4. Click on “Environment Variable”, like in figure 7

5. Double click on CLASSPATH, like in figure 8

6. The “Edit environment variable” window will be opened

7. Click “New” and enter the path were
sqlite− jdbc− 3.32.3.2.jar is saved, like figure 9

Figure 7: Environment Variable

This jar file is needed to translate between Java and the database lan-
guage. In this case between Java and SQLite. Furthermore, a test database
is need, which will be given as an extra file included in this paper, called
“Nutshell-DB.db”. Now, it is possible to use the GUI, shown in figure 10.

14



Figure 8: CLASSPATH

Figure 9: Edit environment variable

15



This database must also be implemented within the source code of the file
“DatabaseHandler.CLS” This will be explained later in detail, for now, this
is the class which contains the GUI’s logic of the database.

Figure 10: Database GUI

This nutshell example should point out, how powerful and useful a GUI
can be. For testing purpose, this interface shows a few database operations
which will be addressed by the components of the GUI. It is recommended
that after the main file of the GUI started, the button “Show every Person”
should be clicked. This will led to that every person, which was previously
added to the database, will be shown in the command line. For example, if
you start the GUI via IntelliJ, names will be displayed in the output section,
like in figure 11.

Figure 11: Output: Person

16



After all names are displayed, it is much easier to experiment with the
additional functions. The first function, which will be explained, is the
SELECT function. With this it is possible to gather information from a
database. So, if a number, more specific the ID of a person is written into
the textfield and the button is clicked, the associated name will be displayed
in the textfield. For example, if the number 1 is entered, the name “Hermann
Maier” will be displayed.

The middle section, the INSERT command, of the GUI is used to imple-
ment a person into the database. So, if a new person or member should be
added, only the name must be written into the textfield. The associated ID
will be added automatically. So, if a name is already written down into the
textfield and after that the button is clicked, the previously written name
will be transmitted to the database. For example, if a new name like “Armin
Assinger” should be saved in the database, the name has to be written in
the textfield. After that, the submit button has to be clicked. After that,
the database will display six names, if the button “Show every person” is
clicked.

The last section, the UPDATE command, is used to change a person’s
name. Therefore, it must be entered a new name and the associated ID from
that person, which its name should be changed. So, if the name of Hermann
Maier should be changed, enter a new name for example “Herminator” into
the first of the two textfield. Into the second one, the associated ID must
be entered, in this case the number 1. After clicking the submit button, the
name of Hermann Maier changed to Herminator.

By now it should be clear what purpose “DB-terminal.fxml” has. This
file is used for the design of the GUI and can be found within the Appendix.
The next file which will be explained is the main file of the interface. After
the explanation of “DB-terminal main.rexx” its associated controller will be
explained. The main file contains the main program, which must be started
to see the GUI, the source code can be found underneath. And last but
not least, the class “DatabaseHandler”. This class is needed to connect to a
database and to interact with it. Without this file a communication would
not work. The source code will be explained later.

1 #!/usr/bin/env rexx

2 -- change directory to program location such that relatively addressed

resources can be found

3 parse source . . pgm

4 call directory filespec(’L’, pgm) -- change to the directory where the

program resides

5

6 .environment~setEntry("my.app", .directory~new)

7 .my.app~homeDir = filespec(’Location’,fullPath)

8 .my.app~dbh = .DatabaseHandler~new

9

10 .my.app~dbh~initSettings

11

17



12 success = .my.app~dbh~connect

13 IF \success THEN CALL connectionError

14 else say "SUCCESS: Connected to DB"

15

16 rxApp=.RexxApplication~new -- create Rexx object that will control the FXML

set up

17 jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")

18 jrxApp~launch(jrxApp~getClass, .nil) -- launch the application, invokes "

start"

19

20 EXIT 0

21

22 connectionError:

23 say "Not connected to DB"

24

25 ----------------------------------------------------------------------------

26 ::REQUIRES "DatabaseHandler.CLS"

27 ::REQUIRES "BSF.CLS"

28 ----------------------------------------------------------------------------

29 ::class RexxApplication -- implements the abstract class "javafx.application

.Application"

30

31 ::method start -- Rexx method "start" implements the abstract method

32 use arg primaryStage -- fetch the primary stage (window)

33 primaryStage~setTitle("Database Tutorial")

34

35 -- create an URL for the FMXLDocument.fxml file (hence the protocol "file

:")

36 fxmlUrl=.bsf~new("java.net.URL", "file:DB_terminal.fxml")

37 -- use FXMLLoader to load the FXML and create the GUI graph from its

definitions:

38 rootNode=bsf.loadClass("javafx.fxml.FXMLLoader")~load(fxmlUrl)

39

40 scene=.bsf~new("javafx.scene.Scene", rootNode) -- create a scene for our

document

41 primaryStage~setScene(scene) -- set the stage to our scene

42 primaryStage~show -- show the stage (and thereby our scene)

Listing 4: DB − terminal main.rexx

DB-terminal main.rexx starts the GUI, more specific its FXML file,
shown in line 40 and 42. But more important, before the GUI is displayed
a new environmental variable will be created, which is shown in line 9 and
10. Furthermore, a new “DatabaseHandler” is generated in line 15, which
triggers the init-method from the DatabaseHandler.CLS-file. After that,
the initSettings-method is called, which creates a true path to the database.
After that a connection is been initialized, shown in line 12.
Should an error occur, “connectionError:” will be triggered and a message
will be displayed in the output section of your program. Line 19 to 21 will
call the class “RexxApplication” underneath between line 33 and 46. In be-
tween these lines the design of the GUI, which is described in the associated
FXML, will be loaded. This GUI will be displayed as the primary stage.

18



1 ::routine selectUserName public

2 use arg slotDir

3 scriptContext=slotDir~scriptContext -- get the slotDir entry

4

5 /* @get(textFieldSelect) */

6 inputID = textFieldSelect~text

7 say inputID

8 name = .my.app~dbh~selectUserName(inputID)

9 say name

10 textFieldSelect~setText(name)

11

12 ----------------------------------------------------------------------------

13 ::routine insertUserName public

14 use arg slotDir

15 scriptContext=slotDir~scriptContext -- get the slotDir entry

16

17 /* @get(textFieldInsert) */

18 name = textFieldInsert~text

19 say name

20 .my.app~dbh~insertUserName(name)

21

22 ----------------------------------------------------------------------------

23 ::routine updateUserNameByID public

24 use arg slotDir

25 scriptContext=slotDir~scriptContext -- get the slotDir entry

26

27 /* @get(textFieldUpdateName textFieldUpdateID) */

28 name = textFieldUpdateName~text

29 id = textFieldUpdateID~text

30 .my.app~dbh~updateUserNameByID(name, id)

31

32 ----------------------------------------------------------------------------

33 ::routine listAllUserNameByID public

34 use arg slotDir

35 scriptContext=slotDir~scriptContext -- get the slotDir entry

36

37 .my.app~dbh~getlistAllUser

38

39 ----------------------------------------------------------------------------

40 ::REQUIRES "DatabaseHandler.CLS"

41 ::REQUIRES "BSF.CLS"

Listing 5: DB − terminal controller.rexx

A controller file is handling all interactions between a GUI and its be-
havior. As already said, every method, every work order has to be declared
here. Within this controller it is possible to address other files, like in this
case a database class “DatabaseHandler.CLS”. For testing purpose, some
general database function were implemented.
So, as shown in the source code above, the first routine in this scenario is
the SELECT function of the database terminal. So, if the submit button
is clicked a routine called “selectUserName” will be called. This routine first

19



fetches the information within the textfield. To do so “/* get(textFieldSelect)
*/ ” will be used. This line of code will gather information from the fx:id of
a GUI component. In this case, the first textfield’s fx:id is called “textField-
Select” within the FXML file. So, as already said, with the /*get (xyz) */
command, it is possible to get access to a GUI-component and its informa-
tion stored.
In line 9 of the source code, it is shown that this information of the textfield
will be stored in a ooRexx variable, for later use. In line 11, the real database
interaction happens. With the previously created variable “inputID” a func-
tion called “selectUserName(inputID)” will be called. This method is stored
in DatabaseHandler.CLS and uses the inputID as an input variable. To do
so, it uses its environment variable, that was previously initialized by the
main program. All kinds of database function will be described underneath,
when the DatabaseHandler will be explained. Last, the gathered informa-
tion from the database will be displayed in the same textfield. This can be
seen in line 13.

The second routine within this file is the “insertUserName” routine. This
routine gathers information from a textfield like the first one, but instead
of displaying some names it will store new names in the database. For this
case, in line 20, the textfield’s information will be gathered. The entered
name will also be an input variable for another database interaction function,
which will also be explained later.

The third routine, the “updateUserNameByID”, is a bit more complex
because we need to gather information from two different textfields, that can
be seen in line 30. After this, the database function “updateUserNameByID”
with its two input variables is called.

The last routine will be called by the button “Show every Person”, which
also calls a function within the database handler underneath. So as can be
seen in this scenario, many different files combined will led to a much more
powerful GUI.

20



1 ::CLASS DatabaseHandler PUBLIC

2 ::METHOD conn ATTRIBUTE

3 ::METHOD DB_URL ATTRIBUTE

4 ::METHOD DriverManager ATTRIBUTE

5 ::METHOD init

6 EXPOSE DriverManager

7 DriverManager = bsf.import("java.sql.DriverManager")

8 --------------------------------------------------------------------------

9 ::METHOD initSettings PUBLIC

10 EXPOSE DB_URL

11 DB_URL = "jdbc:sqlite:C:/users/manue/Dropbox/WU/Hauptstudium/SBWL BIS/

Kurs 5 (Seminar)/Nutshell/Nutshell-DB.db"

12 ----------------------------------------------------------------------------

13 ::METHOD connect PUBLIC

14 EXPOSE DriverManager DB_URL conn

15 SIGNAL ON SYNTAX NAME connectionError

16 conn = DriverManager~getConnection(DB_URL)

17 SIGNAL OFF SYNTAX

18 RETURN .true

19 ----------------------------------------------------------------------------

20 ::METHOD selectUserName PUBLIC

21 EXPOSE conn

22 USE ARG ID

23 query = "SELECT name FROM Person WHERE ID = ?"

24 prepStatement = conn~prepareStatement(query)

25 prepStatement~setString(1, ID)

26 queryResults = prepStatement~executeQuery

27 IF queryResults~next THEN DO

28 name = queryResults~getString("name")

29 END

30 ELSE

31 name = "This ID does not exist here!"

32 return name

33 ----------------------------------------------------------------------------

34 ::METHOD insertUserName PUBLIC

35 EXPOSE conn

36 USE ARG name

37 query = "INSERT INTO Person (name) VALUES (?)"

38 prepStatement = conn~prepareStatement(query)

39 prepStatement~setString(1, name)

40 prepStatement~execute

41 ----------------------------------------------------------------------------

42 ::METHOD updateUserNameByID PUBLIC

43 EXPOSE conn

44 USE ARG name, id

45 query = "UPDATE Person SET name = ? Where ID = ?"

46 prepStatement = conn~prepareStatement(query)

47 prepStatement~setString(1, name)

48 prepStatement~setString(2, id)

49 prepStatement~execute

50 ----------------------------------------------------------------------------

51 ::METHOD getlistAllUser PUBLIC

52 EXPOSE conn

21



53 query = "SELECT * FROM Person"

54 prepStatement = conn~createStatement

55 queryResults = prepStatement~executeQuery(query)

56 index = 1;

57

58 DO WHILE queryResults~next

59 id = queryResults~getString("ID")

60 name = queryResults~getString("Name")

61 nameList.index = name;

62 idList.index = id;

63 say pp(idList.index nameList.index);

64 index = index + 1

65 END

66

67 ----------------------------------------------------------------------------

68 ::REQUIRES "BSF.CLS"

Listing 6: DatabaseHandler.CLS

As already mentioned, “DatabaseHandler.CLS” contains all methods,
which interact with a database.
This class consists of three different attributes and seven different meth-
ods. The first attribute is the conn attribute which stores the information
about the database’s connection. The second attribute is the database’s
url. This url contains the information, more specific the path where the
database is stored. This path can be changed and adapted. Last, the
“DriverManager” attribute saves the information, gathered from the Java
class “java.sql.DiverManager”. This driver manager helps to interact with
the database and is written in Java. But, as it is shown in line 10, it can be
used by ooRexx. Every time a class is newly initialized, first the constructor
of the class will be called. In this case, the init method is called, which
initializes the driver manager.

This initialization process can be seen in DB-terminal main.rexx . The
first method, which is shown in line 12, is therefore to set the right path
for the database. This method is called by the main program.To be able to
test the nutshell program it is necessary that the path of the URL will be
adapted. Write the true path, where the “Nutshell-DB.db” is stored, down
there in line 14. The shown URL was generated for testing purpose.

The third method shown in line 16, is the method which handles the
connection to the database and stores the information about it.
The fourth method is the first one, which is called by a GUI component
itself. In line 24 the connection will be exposed and used. In line 25 the
input variable for this method is declared. Line 27 and 28 create the query
statement for the database, in this case a SELECT query is generated where
the name of an associated ID will be given in return. The “setString(1,ID)”
part is used to replace the question mark in the query with the entered ID.
After that, the query will be executed. If there is a name associated with
this ID the name will be given in return, if not “This ID does not exist

22



here!” will be displayed.
The fifth method, “insertUserName”, is therefore to enter a new person

in the database. The associated ID will be generated automatically. This
method does not differ from the last one apart from the query statement.
The sixth method, as shown in line 45 is used for the UPDATE-function.
The last method is therefore to list all previously entered IDs and names.

These four files listed above will be enough to interact with a database
via JavaFX/FXML and ooRexx.

3.4 JFoenix - Class

In this subsection it will be shown, how versatile SceneBuilder and its com-
ponents are. Figure 12 demonstrates the appearance of default components
of SceneBuilder and newly added components of a class called “JFoenix”.
This class contains many different components mostly with a modern design
in comparison to the default ones. The two files needed, main and FXML,
can be be found within the Appendix, because there is not much which dif-
fers from the previous ones. Furthermore, to create components in JFoenix
style, the class must be downloaded and stored at first. In this subsection
it will be shown how it is done. Follow these few steps:

1. Download JFoenix here: https://github.com/jfoenixadmin/JFoenix (In
this scenario jfoenix-9.0.10.jar is used)

2. Open SceneBuilder and Press the gear symbole, like in figure 13. Then
click on “JAR/FXML Manager”. The Library Manager will be ope-
nend.

3. Click on “Add Library/FXML from file system”

4. Go to the subdirectory where jfoenix-9.0.10.jar was downloaded and
double click it

5. A window like figure 14 will be opened

6. Click ”Import Components”

Now, SceneBuilder contains many new components under the tab “Cus-
tom” on the left side. With these components it is possible to build a GUI
in a more modern way. As it is shown in figure 12, four different kinds of
components, which are often used in graphical user interfaces, where con-
trasted.
The first comparison is between two different kinds of buttons. The left one,
the default styled one, looks very old fashioned and blank. The right one,
the button within the JFoenix class, looks a bit more modern and fancy.

23

https://github.com/jfoenixadmin/JFoenix


Figure 12: Comparison between components

It also displays a black colored wave within the button, at that moment it
is clicked. Also the colored wave changes its direction. For example, if the
cursor clicks on left side of the button, the wave comes also from the left
side, if it clicks on the right side, the wave will come from the right side of
the button.

The second components, which will be compared, are CheckBoxes. A
CheckBox is often used within online surveys or online shopping carts. Based
on the web side or survey, some of them uses more neutral CheckBoxes like
the default one, but also some of them uses the more fancy and colored style,
like the right CheckBox.

Furthermore, DatePicker are very common. As collecting data from
costumers is very important for most companies, it is often seen that a web
side asks for a date of birth. Like the previously mentioned components,
this could be done in a more colorful way or just plain and simple.

Last but not least, the starting window in figure 12 shows two different
kinds of sliders. The left one only can be moved from the left to the right and
the other way round. The right one can also be moved like this, additionally
it displays the value of the slider.

The main file and its associated FXML file can be found within the
Appendix.

24



Figure 13: SceneBuilder - Library Manager

Figure 14: Import Dialog

25



3.5 Multiple Windows

In this subsection it will be shown, how to manage different windows within
one GUI. The main window looks like figure 15. Within this interface it
can be opened two different kinds of windows. One, figure 16, enlarges a
picture and the second one, figure 17, will display a bar chart. These two
types of windows were chosen to show various kinds of operation areas of
GUIs itself. This nutshell example contains five different files, wich will be
explained step by step underneath. Files containing:

• Windows main.rexx

• first window.fxml (Appendix)

• enlarge barChart controller.rexx

• enlargePicture.fxml (Appendix)

• openStats.fxml (Appendix)

Figure 15: Main Window

Underneath the source code of Windows main.rexx is shown. This main
file differs compared to other nutshell examples because it is a bit more com-
plex. To manage different windows within a GUI a so called “Stagehandler”
is needed.

26



1 PARSE SOURCE . . fullPath

2 CALL directory filespec(’L’, fullPath)

3

4 .environment~setEntry("my.app", .directory~new)

5 .my.app~homeDir = filespec(’Location’,fullPath)

6 stageHandler = .StageHandler~new

7 .my.app~stageHandler = stageHandler

8

9 stageHandlerProxy = BsfCreateRexxProxy(stageHandler,,"javafx.application.

Application")

10 stageHandlerProxy~launch(stageHandlerProxy~getClass, .nil)

11 EXIT 0

12

13 ----------------------------------------------------------------------------

14 ::CLASS StageHandler

15 ::METHOD stage ATTRIBUTE

16 ::METHOD scene ATTRIBUTE

17 ::METHOD windowStage ATTRIBUTE

18 ::METHOD FXMLLoader

19 ::METHOD init

20 EXPOSE FXMLLoader

21 FXMLLoader = bsf.import("javafx.fxml.FXMLLoader")

22

23 ----------------------------------------------------------------------------

24 ::METHOD start

25 EXPOSE stage scene FXMLLoader

26 USE ARG stage

27

28 stage~setTitle("Main Window")

29 url=.bsf~new("java.net.URL", "file:first_window.fxml")

30 fxml = FXMLLoader~load(url)

31 scene = .bsf~new("javafx.scene.Scene", fxml)

32 stage~setScene(scene)

33 stage~show

34

35 ----------------------------------------------------------------------------

36 ::METHOD newWindow

37 EXPOSE stage windowStage FXMLLoader

38 USE ARG title, fileName

39 windowStage = .bsf~new("javafx.stage.Stage")

40 windowStage~setTitle(title)

41 url =.bsf~new("java.net.URL", fileName)

42 fxml = FXMLLoader~load(url)

43 scene = .bsf~new("javafx.scene.Scene", fxml)

44 windowStage~setScene(scene)

45 --windowStage~initOwner(stage)

46 windowStage~show

47 ----------------------------------------------------------------------------

48 ::REQUIRES "BSF.CLS"

Listing 7: Windows main.rexx

The complexity exists because some kind of logic must be implemented,

27



which manages the coordination between several different windows. In this
case, it is the class “Stagehandler”. A “StageHandler” does nothing more
than to coordinate windows. In line 7 to 10 can be seen that an environment
variable will be created, after the main program was started. After this, a
new stage handler will be initialized, which invokes its method init. This
newly initialized stage handler will be stored in the environment variable
“.my.app˜stageHandler”, which helps with future coordination. In line 12
and 13 a proxy of the class “StageHandler” will be initialized and launched,
which will invoke its start method. These two steps, creating an environment
variable and launching a proxy, mainly the latter, can also be found in all
other main files of this paper. Only the class StageHandler differs.
If only a GUI with one window is required, it is not needed to manage
different windows, so, one primary stage is enough. This difference can be
seen if other main files will be compared to this one. Within the invocation
of the method start, the title of the GUI will be set, the URL of the FXML
will be loaded and the scene first window.fxml will be displayed.

Within this interface it is possible to invoke two additional GUIs. So,
if the button “Enlarge” is clicked, a newly created window, enlargePic-
ture.fxml, will be opened. To do so, the routine “enlargePicture” within
enlarge barChart controller.rexx will be called. The specific function of this
routine will be explained later, when the controller file will be explained.
The used method to generate additional windows is called “newWindow”
in line 39. Therefore, two input variables will be required. One, the title
of the new window. Second, the file name of the window which should be
opened, for this example enlargePicture.fxml. In line 42, a new stage will be
initialized. This will led to the fact that a new GUI will be created, which
does not replace the main window. So, if the button is clicked, figure 16 will
be displayed.

The previously opened GUI, can be moved around, so the enlarged pic-
ture is not on top of the main window. With the line of code in line 48,
which is commented out now, it is possible to apply the ability that a new
window can only be opened, if the previous opened was closed. So, if this
line of code is not implemented, many different windows can be opened, but,
if this line of code is active, every additional window apart from the main
window has to be closed to open a new one.

Furthermore, if the button “Open” is clicked, the statistics interface will
be opened. This interface contains a bar chart, which is also a JavaFX
component within SceneBuilder. It is also possible to generate test values,
after clicking the “See Stats” button. This circumstance is shown in figure
17 underneath.

After explaining the main file, it is now time to explain the controller of
the main window, more specific the file: enlarge barChart controller.rexx,
which its source code is underneath.

28



Figure 16: Enlarged Picture

1 #!/usr/bin/env rexx

2

3 ::routine openStat public

4 use arg slotDir

5 scriptContext=slotDir~scriptContext

6 URL = "file:openStats.fxml"

7 .my.app~stageHandler~newWindow("Statistics", URL)

8

9 ----------------------------------------------------------------------------

10 ::routine enlargePicture public

11 use arg slotDir

12 scriptContext=slotDir~scriptContext -- get the slotDir entry

13 URL = "file:enlargePicture.fxml"

14 .my.app~stageHandler~newWindow("Picture", URL)

15

16 ----------------------------------------------------------------------------

17 ::routine openSt public

18 use arg slotDir

19 scriptContext=slotDir~scriptContext -- get the slotDir entry

20 /*@get(barChart yAxis xAxis)*/

21 barChart~getData~clear

22

23 XYChartData = bsf.import("javafx.scene.chart.XYChart$Data")
24 XYChartSeries = bsf.import("javafx.scene.chart.XYChart$Series")

29



25

26 dataSeries = XYChartSeries~new

27 dataSeries2 = XYChartSeries~new

28 dataSeries3 = XYChartSeries~new

29

30 yAxis~setLabel("yAxis")

31 xAxis~setLabel("xAxis")

32

33 temp1 = box("String", "July")

34 tempfloat1 = box("float", 5)

35 dataSeries~getData~add(XYChartData~new(temp1, tempfloat1))

36 barChart~getData~add(dataSeries)

37

38 temp2 = box("String", "August")

39 tempfloat2 = box("float", 200)

40 dataSeries2~getData~add(XYChartData~new(temp2, tempfloat2))

41 barChart~getData~add(dataSeries2)

42

43 temp3 = box("String", "September")

44 tempfloat3 = box("float", 50)

45 dataSeries3~getData~add(XYChartData~new(temp3, tempfloat3))

46 barChart~getData~add(dataSeries3)

47 ----------------------------------------------------------------------------

48 ::REQUIRES "BSF.CLS"

Listing 8: enlarge barChart controller.rexx

The first routine within this file is the routine called “openStat”. This
routine will be called , whenever the button “Open” in the main window is
clicked. Within this function a URL is generated, which will be forwarded
to the stagehandler’s method called “newWindow”. As explained earlier,
newWindow needs a title and a filename or a true path to the FXML file,
which should be opened. More specific, the “.my.app˜stageHandler” envi-
ronment variable, which stores the information about the stage handler of
the GUI, will be addressed with its method “newWindow” and the asso-
ciated input variables, in this case, the title “Picture” and the filename of
openStats.fxml.

The second routine within this source code is “enlargePicture” and is
apart from the name of the file and the title of the window identical with
the first routine.

The third routine, the “openSt” routine, creates the values for the bar
chart. If the routine to open the openStats.fxml is called, the bar chart
remains blank until the button “See Stats” is clicked. The button will call
the routine which generates the values. The routine can be found between
line 20 and 49.
First of all, there has to be some kind of access to the bar chart. This will
be done by the line of code in line 23. There it is shown, that every fx:id
mentioned in the associated FXML file can be addressed.
After that, the bar chart gets cleared. This has to be done, because otherwise

30



some layout errors can occur. After these two lines, two Java classes have
to be imported for later use. The first one is needed to generate data for
the bar chart, the second one to generate bundles or series of data. For
every colored bar, a new data series has to be created. If every bar of this
bar chart is of the same data series, only create one series and simply add
the data to that one. For only one series of data use the same “dataSeries”
every time.
But, in this scenario there are three different data series to handle with.
They are getting initialized between line 29 and 31. Further, the label
names of the bar chart are getting added as well.

To be able to generate series of data for Java within ooRexx, line 36 is
needed. As it is shown there, XYChartData needs two input variables. One,
is a string variable and the other one is, in this case, a float variable. To
get these ooRexx variables into Java, they have to be boxed, as it is shown
in the source code above. The remaining series of data work the same. The
result of this can be seen in figure 17.

Figure 17: Open BarChart

31



4 Conclusion

This this paper with its nutshell examples should point out how versatile
and powerful JavaFX/FXML is. It is a modern and convenient approach to
design and create a GUI. Combined with other applications like SceneBuilder
and ooRexx especially its Bean Scripting Framework it is getting even more
versatile. As explained within this paper JavaFX/FXML can be addressed
via ooRexx, so that it is not necessary to learn Java or other scripting
languages to be able to work with JavaFX. Every nutshell example does
have an other point of view to show a wide spectrum of operating areas for
JavaFX/FXML.

Moreover, every source code or file, which may a bit complex are ex-
plained within this paper. Files, which repeat themselves can be found
within the Appendix.

5 Outlook

This paper can not refer to all kinds of aspects of JavaFX. This paper con-
tains only a peek of JavaFX, to be able to interact and to get in touch with
JavaFX. Furthermore, there is a ton of operation areas, in which JavaFX
can be used on. For this circumstance visit the homepage of OpenJFX
and take a look at the documentary of JavaFX. As an example, there are
3D shaped GUI applications or some application with a sound component.
Furthermore, animations can be generated with JavaFX [6].

References

[1] OpenJFX. openjfx.io. Accessed: 2020-11-26.

[2] JavaFX. https://docs.oracle.com/javase/8/javafx/api/javafx/

fxml/doc-files/introduction_to_fxml.html. Accessed: 2020-11-27.

[3] GluonHQ. https://gluonhq.com/products/scene-builder/. Ac-
cessed: 2020-11-27.

[4] w3 XML. https://www.w3.org/TR/REC-xml/. Accessed: 2020-12-12.

[5] Java SE doc. https://www.oracle.com/java/technologies/javase/

javase-jdk8-downloads.html. Accessed: 2020-11-12.

[6] Open Source Community of OpenJFX. https://wiki.openjdk.java.

net/display/OpenJFX. Accessed: 2020-11-12.

[7] ”Rony G. Flatscher”. Automatisierung mit ooRexx und BSF4ooRexx.
https://subs.emis.de/LNI/Proceedings/Proceedings208/307.pdf.
Accessed: 2020-11-13.

32

openjfx.io
https://docs.oracle.com/javase/8/javafx/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://docs.oracle.com/javase/8/javafx/api/javafx/fxml/doc-files/introduction_to_fxml.html
https://gluonhq.com/products/scene-builder/
https://www.w3.org/TR/REC-xml/
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://wiki.openjdk.java.net/display/OpenJFX
https://wiki.openjdk.java.net/display/OpenJFX
https://subs.emis.de/LNI/Proceedings/Proceedings208/307.pdf


[8] ”Hakon Lie, Bert Bos, and Chris Lilley ”. The text/css Media Type.
RFC 2318, RFC Editor, March 1998.

List of Figures

1 Button added . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 DB Browser for SQLite . . . . . . . . . . . . . . . . . . . . . 7
3 SceneBuilder starting screen . . . . . . . . . . . . . . . . . . . 8
4 AnchorPane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 My first GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 CSS added . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7 Environment Variable . . . . . . . . . . . . . . . . . . . . . . 14
8 CLASSPATH . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9 Edit environment variable . . . . . . . . . . . . . . . . . . . . 15
10 Database GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
11 Output: Person . . . . . . . . . . . . . . . . . . . . . . . . . . 16
12 Comparison between components . . . . . . . . . . . . . . . . 24
13 SceneBuilder - Library Manager . . . . . . . . . . . . . . . . . 25
14 Import Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
15 Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
16 Enlarged Picture . . . . . . . . . . . . . . . . . . . . . . . . . 29
17 Open BarChart . . . . . . . . . . . . . . . . . . . . . . . . . . 31

33



A
My first GUI

1 #!/usr/bin/env rexx

2

3 parse source . . pgm

4 call directory filespec(’L’, pgm) -- change to the directory where the

program resides

5

6 rxApp=.RexxApplication~new -- create Rexx object that will control the FXML

set up

7 jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")

8 jrxApp~launch(jrxApp~getClass, .nil) -- launch the application, invokes "

start"

9

10 ----------------------------------------------------------------------------

11 ::requires "BSF.CLS" -- get Java support

12 ----------------------------------------------------------------------------

13

14 ::class RexxApplication -- implements the abstract class "javafx.application

.Application"

15

16 ::method start -- Rexx method "start" implements the abstract method

17 use arg primaryStage -- fetch the primary stage (window)

18 primaryStage~setTitle("My first GUI!")

19

20 -- create an URL for the FMXLDocument.fxml file (hence the protocol "file

:")

21 fxmlUrl=.bsf~new("java.net.URL", "file:My_first_GUI.fxml")

22 -- use FXMLLoader to load the FXML and create the GUI graph from its

definitions:

23 rootNode=bsf.loadClass("javafx.fxml.FXMLLoader")~load(fxmlUrl)

24

25 scene=.bsf~new("javafx.scene.Scene", rootNode) -- create a scene for our

document

26 primaryStage~setScene(scene) -- set the stage to our scene

27 primaryStage~show -- show the stage (and thereby our scene)

Listing 9: My first GUI.rexx

Within this source code it is shown, how to start a GUI with only one
interface to look at. This is a simple way to display a GUI, but only useful
if only one GUI should be displayed. If a second one is needed, the stage
handler approach have to be used.

34



1 <?xml version="1.0" encoding="UTF-8"?>

2

3 <?import javafx.scene.control.Button?>

4 <?import javafx.scene.control.Label?>

5 <?import javafx.scene.control.TextField?>

6 <?import javafx.scene.layout.AnchorPane?>

7 <?import javafx.scene.text.Font?>

8

9 <?language rexx?>

10

11 <AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"

minWidth="-Infinity" prefHeight="400.0" prefWidth="600.0" xmlns="http

://javafx.com/javafx/11.0.1" xmlns:fx="http://javafx.com/fxml/1">

12 <fx:script source="My_first_GUI_controller.rexx" />

13 <children>

14 <Label alignment="CENTER" layoutX="63.0" layoutY="46.0" prefHeight="

44.0" prefWidth="469.0" text="My first GUI" textAlignment="CENTER"

>

15 <font>

16 <Font name="Bauhaus 93" size="48.0" />

17 </font>

18 </Label>

19 <TextField fx:id="textField1" layoutX="169.0" layoutY="159.0"

prefHeight="14.0" prefWidth="263.0" promptText="Write something in

here..." />

20 <Button fx:id="button1" layoutX="265.0" layoutY="251.0" onAction="

slotDir=arg(arg()); call buttonClicked slotDir;" mnemonicParsing="

false" text="Click me!" />

21 </children>

22 </AnchorPane>

Listing 10: My first GUI.fxml

The source code above shows the content within the FXML file. This
FXML file will be called by the associated main application to display the
“My first GUI” interface. It contains various components of a GUI.

35



B
My first GUI with CSS

1 #!/usr/bin/env rexx

2

3 parse source . . pgm

4 call directory filespec(’L’, pgm) -- change to the directory where the

program resides

5

6 rxApp=.RexxApplication~new -- create Rexx object that will control the FXML

set up

7 jrxApp=BSFCreateRexxProxy(rxApp, ,"javafx.application.Application")

8 jrxApp~launch(jrxApp~getClass, .nil) -- launch the application, invokes "

start"

9

10 ----------------------------------------------------------------------------

11 ::requires "BSF.CLS" -- get Java support

12 ----------------------------------------------------------------------------

13

14 -- Rexx class defines "javafx.application.Application" abstract method "

start"

15 ::class RexxApplication -- implements the abstract class "javafx.application

.Application"

16

17 ::method start -- Rexx method "start" implements the abstract method

18 use arg primaryStage -- fetch the primary stage (window)

19 primaryStage~setTitle("My first GUI with CSS!")

20

21 -- create an URL for the FMXLDocument.fxml file (hence the protocol "file

:")

22 fxmlUrl=.bsf~new("java.net.URL", "file:My_first_GUI_CSS.fxml")

23 -- use FXMLLoader to load the FXML and create the GUI graph from its

definitions:

24 rootNode=bsf.loadClass("javafx.fxml.FXMLLoader")~load(fxmlUrl)

25

26 scene=.bsf~new("javafx.scene.Scene", rootNode) -- create a scene for our

document

27 primaryStage~setScene(scene) -- set the stage to our scene

28 primaryStage~show -- show the stage (and thereby our scene)

Listing 11: My first CSS main.rexx

This source code does not differ from that one in A apart from the
primary stage’s title and url.

36



C
SQLite - JDBC

1 <?xml version="1.0" encoding="UTF-8"?>

2

3 <?import javafx.scene.control.Button?>

4 <?import javafx.scene.control.Label?>

5 <?import javafx.scene.control.TextField?>

6 <?import javafx.scene.layout.AnchorPane?>

7 <?import javafx.scene.text.Font?>

8 <?language rexx?>

9

10 <AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"

minWidth="-Infinity" prefHeight="400.0" prefWidth="600.0" xmlns="http

://javafx.com/javafx/11.0.1" xmlns:fx="http://javafx.com/fxml/1">

11 <fx:script source="DB_terminal_controller.rexx" />

12 <children>

13 <Label layoutX="135.0" layoutY="20.0" prefHeight="54.0" prefWidth="

330.0" text="Database - Terminal">

14 <font>

15 <Font size="37.0" />

16 </font>

17 </Label>

18 <TextField fx:id="textFieldSelect" layoutX="136.0" layoutY="109.0"

prefHeight="25.0" prefWidth="330.0" promptText="Please enter the

ID you want the name from:" />

19 <Button fx:id="buttonSelect" layoutX="275.0" layoutY="149.0"

mnemonicParsing="false" onAction="slotDir=arg(arg()); call

selectUserName slotDir;" text="Submit" />

20 <TextField fx:id="textFieldInsert" layoutX="137.0" layoutY="201.0"

prefHeight="25.0" prefWidth="330.0" promptText="Enter the name of

a new member:" />

21 <Button fx:id="buttonInstert" layoutX="276.0" layoutY="241.0"

mnemonicParsing="false" onAction="slotDir=arg(arg()); call

insertUserName slotDir;" text="Submit" />

22 <TextField fx:id="textFieldUpdateName" layoutX="136.0" layoutY="296.0"

prefHeight="25.0" prefWidth="165.0" promptText="Enter new name:"

/>

23 <Button fx:id="buttonUpdate" layoutX="276.0" layoutY="336.0"

mnemonicParsing="false" onAction="slotDir=arg(arg()); call

updateUserNameByID slotDir;" text="Submit" />

24 <TextField fx:id="textFieldUpdateID" layoutX="305.0" layoutY="296.0"

prefHeight="25.0" prefWidth="165.0" promptText="Enter ID to change

name" />

25 <Label layoutX="136.0" layoutY="92.0" prefHeight="17.0" prefWidth="

330.0" text="SELECT command:" />

26 <Label layoutX="137.0" layoutY="184.0" prefHeight="17.0" prefWidth="

330.0" text="INSERT command:" />

27 <Label layoutX="135.0" layoutY="279.0" prefHeight="17.0" prefWidth="

330.0" text="UPDATE command:" />

28 <Button layoutX="36.0" layoutY="349.0" mnemonicParsing="false"

prefHeight="25.0" prefWidth="159.0" onAction="slotDir=arg(arg());

call listAllUserNameByID slotDir;" text="Show every Person" />

37



29 </children>

30 </AnchorPane>

Listing 12: DB terminal.fxml

The XML code above is used to generate a simple terminal window for
a database.

D
JFoenix - Class

1 <?xml version="1.0" encoding="UTF-8"?>

2

3 <?import com.jfoenix.controls.JFXButton?>

4 <?import com.jfoenix.controls.JFXCheckBox?>

5 <?import com.jfoenix.controls.JFXDatePicker?>

6 <?import com.jfoenix.controls.JFXHamburger?>

7 <?import com.jfoenix.controls.JFXSlider?>

8 <?import javafx.scene.control.Button?>

9 <?import javafx.scene.control.CheckBox?>

10 <?import javafx.scene.control.DatePicker?>

11 <?import javafx.scene.control.Label?>

12 <?import javafx.scene.control.Separator?>

13 <?import javafx.scene.control.Slider?>

14 <?import javafx.scene.layout.AnchorPane?>

15 <?import javafx.scene.text.Font?>

16

17

18 <AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"

minWidth="-Infinity" prefHeight="400.0" prefWidth="600.0" xmlns="http

://javafx.com/javafx/8.0.171" xmlns:fx="http://javafx.com/fxml/1">

19 <children>

20 <Label alignment="CENTER" layoutX="120.0" layoutY="14.0" prefHeight="

17.0" prefWidth="236.0" text="Default Style">

21 <font>

22 <Font name="System Bold" size="12.0" />

23 </font>

24 </Label>

25 <Separator layoutX="353.0" orientation="VERTICAL" prefHeight="400.0"

prefWidth="7.0" />

26 <Label alignment="CENTER" layoutX="361.0" layoutY="14.0" prefHeight="

17.0" prefWidth="236.0" text="JFoenix Style">

27 <font>

28 <Font name="System Bold" size="12.0" />

29 </font>

30 </Label>

31 <Separator layoutX="117.0" orientation="VERTICAL" prefHeight="400.0"

prefWidth="7.0" />

32 <Separator layoutY="39.0" prefHeight="2.0" prefWidth="600.0" />

33 <Label alignment="CENTER" layoutX="7.0" layoutY="69.0" prefHeight="

28.0" prefWidth="107.0" text="Button:">

38



34 <font>

35 <Font name="System Bold" size="12.0" />

36 </font>

37 </Label>

38 <Label alignment="CENTER" layoutX="7.0" layoutY="140.0" prefHeight="

28.0" prefWidth="107.0" text="CheckBox:">

39 <font>

40 <Font name="System Bold" size="12.0" />

41 </font>

42 </Label>

43 <Label alignment="CENTER" layoutX="7.0" layoutY="230.0" prefHeight="

28.0" prefWidth="107.0" text="DatePicker:">

44 <font>

45 <Font name="System Bold" size="12.0" />

46 </font>

47 </Label>

48 <Label alignment="CENTER" layoutX="7.0" layoutY="329.0" prefHeight="

28.0" prefWidth="107.0" text="Slider:">

49 <font>

50 <Font name="System Bold" size="12.0" />

51 </font>

52 </Label>

53 <Separator layoutY="122.0" prefHeight="2.0" prefWidth="600.0" />

54 <Separator layoutY="199.0" prefHeight="2.0" prefWidth="600.0" />

55 <Separator layoutY="297.0" prefHeight="2.0" prefWidth="600.0" />

56 <Separator layoutY="48.0" prefHeight="2.0" prefWidth="600.0" />

57 <JFXButton buttonType="RAISED" layoutX="436.0" layoutY="71.0"

ripplerFill="#171717" text="Button" />

58 <JFXCheckBox layoutX="423.0" layoutY="155.0" text="CheckBox" />

59 <JFXDatePicker layoutX="394.0" layoutY="232.0" />

60 <JFXSlider layoutX="399.0" layoutY="336.0" />

61 <JFXHamburger layoutX="46.0" layoutY="13.0" />

62

63 <DatePicker layoutX="151.0" layoutY="232.0" />

64 <Slider layoutX="151.0" layoutY="336.0" />

65 <CheckBox layoutX="167.0" layoutY="155.0" mnemonicParsing="false" text

="CheckBox" />

66 <Button layoutX="178.0" layoutY="71.0" mnemonicParsing="false" text="

Button" />

67

68 </children>

69 </AnchorPane>

Listing 13: normal vs. jfoenix.fxml

This source code will be called by the associated main file to display the
GUI of the JFoenix subsection.

39



1 PARSE SOURCE . . fullPath

2 CALL directory filespec(’L’, fullPath)

3

4 .environment~setEntry("my.app", .directory~new)

5 .my.app~homeDir = filespec(’Location’,fullPath)

6 stageHandler = .StageHandler~new

7 .my.app~stageHandler = stageHandler

8

9 stageHandlerProxy = BsfCreateRexxProxy(stageHandler,,"javafx.application.

Application")

10 stageHandlerProxy~launch(stageHandlerProxy~getClass, .nil)

11 EXIT 0

12 ----------------------------------------------------------------------------

13

14 ::CLASS StageHandler

15 ::METHOD stage ATTRIBUTE

16 ::METHOD scene ATTRIBUTE

17 ::METHOD windowStage ATTRIBUTE

18 ::METHOD FXMLLoader

19 ::METHOD init

20 EXPOSE FXMLLoader

21 FXMLLoader = bsf.import("javafx.fxml.FXMLLoader")

22

23 ::METHOD start

24 EXPOSE stage scene FXMLLoader

25 USE ARG stage

26 stage~setTitle("Starting Window")

27 url=.bsf~new("java.net.URL", "file:normal_vs_jfoenix.fxml")

28 fxml = FXMLLoader~load(url)

29 scene = .bsf~new("javafx.scene.Scene", fxml)

30 stage~setScene(scene)

31 stage~show

32 ----------------------------------------------------------------------------

33 ::REQUIRES "BSF.CLS"

Listing 14: normal vs jfoenix main.rexx

As can be seen here, a “StageHandler” is used even though only one
window is displayed. This is shown for testing purpose. Both approaches,
the primary stage or stage handler, can be used.

40



E
Multiple Windows

1 <?xml version="1.0" encoding="UTF-8"?>

2

3 <?import javafx.scene.control.Button?>

4 <?import javafx.scene.control.Label?>

5 <?import javafx.scene.control.Separator?>

6 <?import javafx.scene.image.Image?>

7 <?import javafx.scene.image.ImageView?>

8 <?import javafx.scene.layout.AnchorPane?>

9 <?import javafx.scene.text.Font?>

10 <?language rexx?>

11

12 <AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"

minWidth="-Infinity" prefHeight="400.0" prefWidth="600.0" xmlns="http

://javafx.com/javafx/11.0.1" xmlns:fx="http://javafx.com/fxml/1">

13 <fx:script source="enlarge_barChart_controller.rexx" />

14 <children>

15 <Label alignment="CENTER" layoutX="51.0" layoutY="29.0" prefHeight="

38.0" prefWidth="498.0" text="Main - Window">

16 <font>

17 <Font name="System Bold" size="43.0" />

18 </font>

19 </Label>

20 <Button layoutX="87.0" layoutY="256.0" mnemonicParsing="false"

prefHeight="37.0" prefWidth="89.0" onAction="slotDir=arg(arg());

call enlargePicture slotDir;" text="Enlarge" />

21 <ImageView fitHeight="90.0" fitWidth="107.0" layoutX="78.0" layoutY="

155.0">

22 

25 </ImageView>

26 <Separator layoutY="113.0" prefHeight="0.0" prefWidth="600.0" />

27 <ImageView fitHeight="106.0" fitWidth="121.0" layoutX="354.0" layoutY=

"147.0">

28 

31 </ImageView>

32 <Button layoutX="386.0" layoutY="256.0" mnemonicParsing="false"

prefHeight="37.0" prefWidth="89.0" onAction="slotDir=arg(arg());

call openStat slotDir;" text="Open" />

33 </children>

34 </AnchorPane>

Listing 15: first window.fxml

This is the main GUI within the nutshell example “Multiple Windows”.

41



1 <?xml version="1.0" encoding="UTF-8"?>

2

3 <?import javafx.scene.image.Image?>

4 <?import javafx.scene.image.ImageView?>

5 <?import javafx.scene.layout.AnchorPane?>

6

7

8 <AnchorPane maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"

minWidth="-Infinity" prefHeight="400.0" prefWidth="600.0" xmlns="http

://javafx.com/javafx/11.0.1" xmlns:fx="http://javafx.com/fxml/1">

9 <children>

10 <ImageView fitHeight="400.0" fitWidth="600.0">

11 

14 </ImageView>

15 </children>

16 </AnchorPane>

Listing 16: enlargeP icture.fxml

This is the GUI which will be displayed if the button “Enlarge” is clicked
within the nutshell example “Multiple Windows”.

1 <?xml version="1.0" encoding="UTF-8"?>

2

3 <?import javafx.scene.chart.CategoryAxis?>

4 <?import javafx.scene.chart.NumberAxis?>

5 <?import javafx.scene.chart.StackedBarChart?>

6 <?import javafx.scene.control.Slider?>

7 <?import javafx.scene.layout.AnchorPane?>

8 <?import javafx.scene.layout.VBox?>

9 <?language rexx?>

10

11 <VBox xmlns="http://javafx.com/javafx/11.0.1" xmlns:fx="http://javafx.com/

fxml/1">

12 <children>

13 <AnchorPane maxHeight="-1.0" maxWidth="-1.0" prefHeight="-1.0"

prefWidth="-1.0" VBox.vgrow="ALWAYS">

14 <children>

15 <StackedBarChart fx:id="barChart" layoutX="14.0" layoutY="

72.0" prefHeight="434.0" prefWidth="800.0">

16 <xAxis>

17 <CategoryAxis side="BOTTOM" />

18 </xAxis>

19 <yAxis>

20 <NumberAxis side="LEFT" />

21 </yAxis>

22 </StackedBarChart>

23 <Slider id="updateButtonSmall" fx:id="slider" blockIncrement="1.0

" layoutX="32.0" layoutY="35.0" majorTickUnit="0.05"

prefWidth="300.0" showTickLabels="true" showTickMarks="true"

snapToTicks="true" />

24 </children>

42



25 </AnchorPane>

26 </children>

27 <fx:script source="barChartController.rex" />

28 </VBox>

Listing 17: barChart.fxml

That is the interface of the bar chart, which will be created.

43


	Introduction
	BSF4ooRexx
	JavaFX/FXML
	SceneBuilder

	Installation
	Java
	ooRexx
	BSF4ooRexx
	JavaFX
	SceneBuilder
	DB Browser (SQLite)

	Nutshell Examples
	My first GUI
	My first GUI with CSS
	SQLite - JDBC
	JFoenix - Class
	Multiple Windows

	Conclusion
	Outlook
	 My first GUI
	My first GUI with CSS
	SQLite - JDBC
	JFoenix - Class
	Multiple Windows

