
Cost comparisons between open-source and

proprietary software

Dzhan Dimitrov - 11808940

Date: December 17, 2020

1

Contents

1 Introductiont 5

2 The economics behind software development 6
2.1 The logic of successful software 7
2.2 Subtle aspects of software economics, that must be

included in cost/value calculations 8
2.2.1 Considering the scalability of software as a

value source 8
2.2.2 Considering late delivery time of software as

opportunity cost 9
2.3 How can the process of software creation be improved? 12

2.3.1 Flat decision-making for better value delivery 13
2.3.2 Creating direct links between technical param-

eters and business aspects 14

3 How to estimate the costs of a software development
project? 15
3.1 Cost fluctuations and their interdependence with the

learning curve in new projects 16
3.2 Lifecycle of the designed products 17
3.3 Designing the products considering future circumstances 18

4 Open-source software and its economic sense 21
4.1 Community open-source 21
4.2 Single-vendor commercial open-source 21

4.2.1 Business function of the open source release . 22
4.2.2 How the open-source develops your product? . 24

5 The motivation to be part of community open-source
project 25
5.1 Materialistic motives in open-source participation . . 25
5.2 Non-materialistic motives in open-source participation 26

6 How similar/different are open-source and propri-
etary firms in their production and selling approaches? 26
6.1 The evolution of Microsoft and its research and de-

velopment costs . 27

2

6.2 The evolution of Red Hat Linux its research and de-
velopment costs . 28

6.3 Similarities between business approaches between open-
source and proprietary firms 30
6.3.1 Red Hat’s acquisition costs 30
6.3.2 Transition to dual-licensing of open-source firm 31

6.4 Applications layer production and selling strategies . 32
6.4.1 Development of proprietary firm SAP 33
6.4.2 Development of open-source firm Compiere . . 34

6.5 Equalization in the selling approach 35

7 Conclusion 35

8 Sources 37

3

I hereby declare that:

1. I have written this paper myself, independently and without
the aid of unfair or unauthorized resources. Whenever content has
been taken directly or indirectly from other sources, this has been
indicated and the source referenced.

2. This paper has not previously been presented as an examina-
tion paper in this or any other form in Austria or abroad.

3. This paper is identical with the thesis assessed by the exam-
iner.

Date: December 17, 2020

4

1 Introductiont

In this seminal work we examine the cost structure of open-source
and proprietary software, perceiving software development as an
ongoing investment activity. This software decision-making process
can be viewed as the expenditure of valuable resources (such as time,
talent, money) with the end goal of creating surplus value. We in-
clude insight about the design and strategy decisions for increased
productivity of the software investments and propose more sophisti-
cated method for evaluating projects. In the first section we present
insights for software economics and subtle aspects for evaluating the
cost/return characteristics of software projects. Because we examine
the costs as an investment of valuable resources, the seminal work
also puts an emphasis on different sources of value that can justify
the invested resources. In this mean we consider more enhanced
notion for costs and we also include the missed sources of value (op-
portunity costs), instead of simply considering the expenditure of
material resources on a given project. We also provide models for
more comprehensive cost estimation and provide some insights of
the software economics.

Section 2 and 3 provide models for cost estimation and better design
of software development projects, as well as the different kinds of
costs that every project face by developing and marketing a software
product. Some categories of open-source and proprietary software
and their differences in licensing structure are clarified. These dif-
ferences have some advantages and some disadvantages, that are
further examined. They become more distinguishable after reading
section 5, where we show some case studies of open-source and pro-
prietary companies, their strategies, and their costs (particularly on
research and development) by software development.

We also examined the motivation of developers to participate in
open source and showed some reasonable advantages that comes
along the participation in open source. We referred also to altruis-
tic and self-fulfillment motives. These can be read in section 4.

5

2 The economics behind software development

The sustainable advancement of computer science enables the cre-
ation of additional utility for all kinds of systems. The value creation
consists in information processing in high speeds and low costs and
changes processes in all industries. Although the hardware is the
enabler for this change, it is the software that represents the value
creation. Information technology spending on enterprise worldwide
for 2019 is 477 billion U.S. dollars (Statista, 2020).

In this large industry some losses are inevitable because of the ef-
fective working marketplace. But sometimes the consequences of
non-repellent software product are too large and unpredictable. It
is important to have clear vision regarding the risk-return charac-
teristics by the development of software products. In this section
we will examine some problems in software development regardless
if the project is open source or proprietary. This will allow us to
become more acquainted with the economics behind the software
development before starting any comparisons. In both cases soft-
ware development is a matter of procreation of valuable resources
for the participating stakeholders, that can be volunteer developer
communities or business managers. The values put in this invest-
ment can be time and talent. As the cost consists mostly of effort,
which we can translate to monetary terms. Some of the benefits in
return can be non-monetary as we will discuss in further section.
The sustainable advancement of computer science enables the cre-

ation of additional utility for all kinds of systems. With the develop-
ment of the IT-industry, the work efficiency has grown enormously,
and the costs have sunk. Although the hardware is the enabler for
this change, it is the software that represents the value creation.
Information technology spending on enterprise worldwide for 2019
is 477 billion U.S. dollars (Statista, 2020).

Not all software projects can be successful, but sometimes the con-
sequences of non-repellent software product are too large and un-
predictable. It is important to have clear vision to the risk-return
characteristics by the development of software products. In this sec-
tion we will examine some problems in software development. This
will allow us to become more acquainted with the economics be-
hind the software development before starting any comparisons. In

6

both cases it is a matter of procreation of valuable resources for
the participating stakeholders, as volunteer developer communities,
business managers or users.

2.1 The logic of successful software

In businesses today investing in software is a central aspect. To
understand the economics of software development we must look to
the matter as expenditure of valuable resources anticipating future
returns. What we want is the greatest possible return. To assess
it in monetary terms we can use axioms of corporate finance. The
value today is assessed by the expected future gains. For project
to be successful, it must produce more benefits than the used re-
sources and in less costs that the competitors need to produce the
same value. Or to produce more value than competitor at equal
cost (Barry W. Boehm and Kevin J. Sullivan, 1999). A blunder
that may appear is considering only technical parts of the work.
There should always be link between the software and the created
value. The logic of good software design is a logic of value creation
(Barry W. Boehm and Kevin J. Sullivan, 1999). Another good way
of considering this matter is in the lights of successful philanthropic
foundations. Clever philanthropic foundations have greater impact
on social benefits at the same cost or create the same social benefits
at equal cost.

Because of the work and department separation in the corporate
world it may be that sometimes this link between software devel-
opment and value creation gets lost. The developers are guided
from technical perspective. The correct models for them are these
of mathematical abstraction and that can lead to remoteness to the
enterprise obligation for value delivery. This problem may be deeper
than it appears to be. Because these connections are unclear also for
senior management, which finds difficult to track how investments at
technical level helps for value delivery (Barry W. Boehm and Kevin
J. Sullivan, 1999). In their article authors Barry Boehm and Kevin
J. Sullivan argue that there is a lack of adequate modelling that can
measure the connections between technical decision and value cre-
ation (Barry W. Boehm and Kevin J. Sullivan, 1999). They suggest
that the firms should be able to account on their software projects

7

as capital investments, which means to be able to involve third par-
ties, selling them project risks and warranties. As a result of that
some shortcomings behind software economics can be overcomed.

2.2 Subtle aspects of software economics, that must be
included in cost/value calculations

Here we will reflect on some aspects in software economics may
remain subtle by evaluating the software and making cost-value cal-
culations. Sometimes the developed product may have a great po-
tential that can be triggered by uncertain circumstances. Thus, it
is important to have a strategic concern about the possible future
synergies and additional costs for faster shipment of the product.

2.2.1 Considering the scalability of software as a value source

As we consider the value of a company, we do not look only at its
current revenue streams. One very important aspect is to consider
what opportunities may the company have regarding its current po-
sition in the market. If the company does not make any revenue,
it does not exclude the possibility that it won’t make revenues in
the future. We must consider if a company can eventually is in
good position to exploit opportunities when they arise (Trigeorgis,
1997). This was the case with Amazon. Jeff Bezos, the owner of the
company, was named Man of the year for 1999 by Times Magazine,
when the company was selling only books (Barry W. Boehm and
Kevin J. Sullivan, 1999). Back then the business they were running
was not in the scale that is today, but they had the synergies and
options ahead of them because of their position in the market. This
way of thinking applies also for software, especially for open-source
software.

It is important for developers to understand how they can increase
the value of the product they develop by designing it in sustainable
way, which create advantages for the future. These decisions regard-
ing the design of the product must be constructed in strategic way.
In competitive markets the options one has for the future can create
a big difference regarding the position of the product or company
in the future. All these factors must be considered while investing

8

funds into a project. When it comes to return, they may not occur
or may require complex economic drivers to be from any relevance.
So how can we measure the value of such matter.

One way to measure the utility of this advantage is to find an op-
tion price. This method provides forecast for the probabilistic future
gains. Another advantage of pricing current software project as an
option is that it does not rely on subjective estimation but exist-
ing data from the financial markets (Barry W. Boehm and Kevin
J. Sullivan, 1999). The essence is to estimate the price considering
the fluctuation of the value over time. That will give the estimated
value of the property over a given timeframe as a function of the
volatility. The results are objective because they derive from the
market as the comparable assets must have the same amount of
risk. Finally, we must evaluate if the value of the option is worth
the initial investment to obtain the architecture, which enables the
exploitation of the option.

As we speak for value, it is also important to mention that value
does not have to always be monetary. Sometimes it even cannot be
measured as a scalar quantity. Let us consider the indifferent posi-
tion between cost and safety. In this situation every tiny measure
of safety can be more valuable than cost, which makes it ineffectual
for scientific comparisons (Haimes, 1999). It is interesting that the
greatest and the longest enduring companies do not make money
their highest priority. Instead, they see it as intermediary for creat-
ing value in other dimensions (Collins; Porras, 1997).

2.2.2 Considering late delivery time of software as opportunity cost

Another aspect that has the be considered is the timeframe when
the software is delivered and how the number of developers working
on project influence the project duration. In this term the propri-
etary software often has an advantage in terms of the ability to plan
the time when the software is complete. The trade-off here consists
in the opportunity costs on the one hand and the lower efficiency on
the other when more developers are put in work. In the literature
more ways for the estimation of the cost of software compared to
its benefits can be found, such as development cycle time, delivered

9

quality, synergies to other software, and options for strategic op-
portunities as discussed (Barry W. Boehm and Kevin J. Sullivan,
1999). For value-based investments it is crucial to be able to as-
sess the delivered value. Thus, the endeavour put on the assessment
of the costs in unity with the value of the created product (which
is linked with uncertainties, competition, and incomplete informa-
tion) is critical for the investment decisions for enterprises (Barry
W. Boehm and Kevin J. Sullivan, 1999).

An example for models that estimates the most cost-efficient time-
frame for developing software is the rule of thumb:

Calendar Months = 3 · 3
√
Person-Months|

It states that for example in a 27 person-month project the most
efficient schedule would be 9 months for group of 3 people. The
drawback of this function is that it considers only the direct cost
for the development of the project and it neglects the opportunity
cost for delivering the product in the marketplace before the com-
petitors. These considerations are decisive for creating advantage
in today’s world. Thus, while considering costs in the development
of open source or proprietary software we must also look from a
broader perspective.

The software product can be viewed as an option in a stock market.
If after the development, the software happens to have a value it is
shipped to the market. Or, consequently, if after completion of a
phase in the software development it is reasonable in the lights of the
new information and circumstances the next phase is started. That
is the equivalent of exercising the option. If a competitor enters the
market and gains a portion of the cash flow, that can be viewed as
a drop in the dividends and hence the stock price. Dividends are
the big motives for competitors to enter the market. The catch in
this situation is that the more lucrative product produced by the
company (pays a lot of dividends), the more will be the incentive
for concurrents to enter the market. The shipment of the product to
the market is crucial because it means that the company will be able
to skim the market for a given period (until competitors enter the
market too). That should be considered, when planning the time
to release the product and will have direct reflection over design-
decisions over the product. Since the time-to-market is any delay

10

is connected to opportunity costs. For example, time-to-market can
be crucial for government contracts (Barry W. Boehm and Kevin J.
Sullivan, 1999).

This gives a significant advantage to proprietary software in compar-
ison with open-source software since the implementation schedules
in open source are not tight or they lack deadlines. The loss of co-
ordination because of the scattered community causes more delay,
and some opportunities are sunken. In comparison in proprietary
firms the developers have timely objectives, which leads to better
results, at least economically.

Image source (Barry W. Boehm and Kevin J. Sullivan, 1999).

11

To estimate the costs of software development project we need not
only the estimation model for the direct cost connected to the project
but also business operational mission domains in to be able to make
trade-offs between development time, effort put in work, quality,
functional diversity, and the opportunity to create a real value for
existing demand (Barry W. Boehm and Kevin J. Sullivan, 1999).
The aim by comparing costs by software development must be to
have more broad, dynamic, and strategic overlook to the matter.
This will allow more precise decision making by reflecting on differ-
ent circumstances.

2.3 How can the process of software creation be improved?

The roadmap of Barry W. Boehm and Kevin J. Sullivan is devel-
oped to build a frame, which will enable measurable increase in the
delivered value of IT-projects. This may appear straightforward to
the reader but there are subtleties, which must be considered to con-
struct a proper way for project evaluation. For example, in business
context the present value is calculated differentiating future options,
whose future values must be discounted to the present moment and
we should include the possible exploitation of additional markets in
our evaluation. These options may have a great value, that are not
realized, and it can lead to abandoning of promising projects. In
their work Barry W. Boehm and Kevin J. Sullivan emphasize that
value is a complex quality, which can be unapparent at the first
sight. So, evaluating the projects in terms of the realized potential,
it is crucial to have methods for their better evaluation.

The Roadmap in the figure above pictures backwards a network
of important outcomes and intermediate outcomes. The interde-
pendencies of the outcomes can be tracked and there are provided
important paths, how the models and methods can improve. We
can distinguish two parts in this roadmap. In the lower part the
roadmap handles tactical matters (for example how can the costs
of the project be estimated more accurately). The parts above are
linked to strategic concerns (for example which options emerge by
developing the project and what synergies can be used).

12

2.3.1 Flat decision-making for better value delivery

One outcome of the proposed roadmap is that designers at all levels
must take part in determining the structure of larger programs and
participate in process design to enable better value delivery. As a
result of that the management of the project becomes more dynamic
and programs can be distributed strategically in a portfolio (Barry
W. Boehm and Kevin J. Sullivan, 1999).

To make the proper decision there should be considered the follow-
ing matters. The design space must be broad enough. The design
space is determined from the market situation – the competitors and
their products. Influence on the structure have variety of conditions
– for example, the national-level strategy for long term research
(where the product is being developed) and development expenses.
So, these external factors determine what materials are produced,
that can be included in our design space and which properties they
have.

Another issue that is covered by the roadmap is the need for bet-
ter links between technical design, current circumstances, and value
creation. This can be achieved by better models of the sources of
value. These models can be used by the developers and will result
in better decisions. One example of such a link can be the increased
price of an option in a volatile market situation.

So that the roadmap can function the people in management
must have deeper understanding of the technical part of the work.
They personally must understand the sources of value and how they
can be transformed in a value creating manner. This is a crucial
prerequisite for combining technical and strategic decisions to catch
the greatest possible value.

There is a need for dynamic monitoring, which will steer the deci-
sions through the design-space (the multidimensional combination
and the interaction between the materials and processes used). This
means constantly gathering information about valuation and risk of
the project, including external factors like price of the materials,
macroeconomic climate, moves of competitors. The result is a dy-
namic and more correct evaluation of the possible cost-benefit de-
pendencies. In essence we check the relevance of the business model

13

that we build upon our project in each step before proceeding in
further phases.

The design-space in which the developers operate in IT-projects are
less developed in comparison to other fields. If we take as an ex-
ample the automotive industry, we see that there are specialised
producers of every component of the car and they compete fiercely
for the prices of their products. When we look in IT-field we see
that options for buying third-party components are less developed.
Furthermore, there is less chances for managing the risk of projects.
Warranties and insurance are common in all industries. An orange
producer can buy future for oranges and ensure his business if the
price of oranges exceeds given amount. The lack of opportunities to
manage risk with market-based mechanisms is an obstacle for the
efficient project development.

2.3.2 Creating direct links between technical parameters and busi-
ness aspects

While creating a software a lot of technical and managerial decisions
must be made. Which formal methods will be used, what will the
software architecture look like? These are common technical issues.
Managerial issues are the decision about the changes in a program.
Should the program continue when new information about the con-
jecture occurs or should be stopped. Even though it looks like these
two matters are separable from each other, their links are decisive
for the value, which is being created.

Important method for adapting to new situations is to use design
for change. The software components must be created in a way that
allows substitutability – modifying or replacing components. That
will allow a prolonged life cycle of the created product, which results
in higher chance to deliver more value than the spent goods/efforts.
Thus, this method is seen as a value-maximizing. This rule is very
reasonable, but in addition to that one must also include the cir-
cumstances in his calculations. If the design intervals are high and
it takes a lot of additional time to implement a project in modualar
way, while at the same time the project is highly competitive and
time to market is crucial for success or failure, then it can be more

14

advantageous to not implement this method. Other possible ques-
tions are the likelihood of change, so that the implemented method
is of use, the time when the change can occur, and the importance
that it will have in terms of obtained benefits. What we want to
show with these circumstances, is that the decisions for software
architecture goes always hand in hand with managerial concerns.
Any one-sided approach taken in software development project is a
failure in heuristic. It is a bad way for calculating costs or expected
returns. Circumstances may impose the need for free open-source
version of a software product and circumstances may change.

Software development process usually flows in uncertain environ-
ment with limited knowledge and a lot of external factors that can-
not be precalculated. Often the work that a developer puts on one
project is tied to the actions of competitors, the stand technology
improvement, the larger project that is part of, or another macro-
economic factors. With the fluctuation of the circumstances some
brilliant visions fall through, and new ones arise. It can often be
the case, that the contribution of the project is to some completely
different area as initially planned. The same applies for the progress
of the project, which can often go through different paths that were
not predicted in the initial planning. Therefore, there should always
be searched for value between the lines through the evolution of the
project. As we already discussed software developers envision the
software design as a value creating decision-making process and un-
derstand the connections between technical and business side. They
also need to implement ways to react to changing realities, so that
the different areas can be dynamically monitored and controlled.
These areas include the product and the related decisions for prod-
uct architecture, the processes, properties, costs, risks, markets, and
opportunities such as expanding the functions of the product or use
synergies to enter new markets (Barry W. Boehm and Kevin J. Sul-
livan, 1999).

3 How to estimate the costs of a software devel-
opment project?

The lower part of the diagram concentrates on how to use correct
data to make a good estimation for the possible costs and benefits

15

in the process of developing, supporting and exploiting a bundle
of information technology assets. This approach has the advantage
of being able to track the progress regarding cost, take dynamic
managerial actions to correct the initial plan under change of cir-
cumstances and emerging of new information. In this part we con-
centrate on how to use relevant and up to date data for cost and
benefits estimation of the project.

Examples for established models for cost estimation are COCOMO
(Boehm, 1981), Estimacs (Rubin, 1985), SEER (Jensen, 1983). Prob-
lem with cost estimations with different methods is the lack of uni-
fied system for the measurement and there is a variation between
different organization in the way they distinguish their data. This
has led as a result that examinations within organizations are often
more precise and consistent in their results. The rise of different
technologies and the increase in the extent of process methodolo-
gies makes the predictions more difficult and more data points are
demanded for the same amount of accuracy in comparison to the
past. (Boehm, 1999) For example, the in year 2000 released version
COCOMO II needs 161 data points for the same prediction accu-
racy in comparison to 63 data points of its predecessor, COCOMO,
released in 1981. There are different approaches for estimations. All
of them must cope with data, that is not precisely defined, and the
rapidly changing technology.

3.1 Cost fluctuations and their interdependence with the
learning curve in new projects

With the development of new projects every organization can de-
velop a better understanding of the applications and make better
forecasting for the probable costs, which will arise from the devel-
opment of new software. This also leads to being able to organize
the project with better estimation for how much time the project
will take, and it leads also to an increase in the quality of the project
planning. As the projects becomes more connate to previous ones,
there can be observed a boost in the productivity. This a conse-
quence of accumulation of knowledge and reusable components for
the software. With the execution of large number of projects, the
firm comes to a point, where it can develop new projects only by
using the old components. That is followed by decrease in estima-

16

tion error, because the teams can calculate better the related costs.
This follows until the information can be recalibrated to the new
circumstances. As the competence of the project members grow,
they can apply packaged solutions, adapted to satisfy the needs of
the purchasing organization. These are also known as COTS (com-
mercial off-the-shelf) components. As the domain of understanding
grows with time and the project members can use very high-level
languages (VHLL) and develop system of systems for different do-
mains. This is shown in the graphic below.

Image source (Barry W. Boehm and Kevin J. Sullivan, 1999).

3.2 Lifecycle of the designed products

Software-development is a long-term investment and a process, where
a lot of cross organizational decisions are made. The aim by the de-
velopment of the project is to create an additional value. Other

17

targets like the safety, quality or user-friendliness of the product are
secondary. The technical methods can be viewed as mediums for
reaching the end goal.

For creating added value, the software development process must
be considered as an investment action. The project must be man-
aged and modelled in an according way. Structuring portfolio of
products and creating strategy for exploitation of current or possi-
ble opportunities in the future, considering the flow of the market
and the actions of another companies (Barry W. Boehm and Kevin
J. Sullivan, 1999). Methods for evaluating of present value can be
taken from finance. With the help of these methods, we can com-
pare the future costs and potential benefits of a project, evaluate,
and determine the tolerable risk levels, create framework that helps
for better decisions, and make strategies concerning the qualities
that the project must possess (for example encouraging the speed
of project).

In the literature are present work for management of projects under
unclarity. Breaking down the project into modules, which allows
to stop the projects, if the circumstances develop poorly or create
inheritor projects, if the future turns favourable and brings new op-
portunities. This action be spending resources for the delay of the
decisions and doing so winning time and actual information.

It is natural to derive knowledge from different fields such as fi-
nance in the software engineering. The knowledge derived from
finance helps software engineers to take more effective approaches.
It provides new ways of making sense of product development in
considering complications, risk, disinformation, and actions of com-
petitors.

3.3 Designing the products considering future circumstances

Looking from the perspective of finance, we become sights that are
not considered in the software development side. It is possible to
add a new dimension to software development project, as we con-
sider new potential sources of value. The concepts below allows us
to gain new insight and become a deeper vision for possible sources
for value exploitation. From the economic viewpoint catching these
points increases the value of the developed project.

18

� What is the cash value today of future payoffs that might oc-
cur?

� What is the value of the new information that may arise during
the project development process?

� Is the risk of the project tolerable and what is the risk-free
value (or how less utility the project has for the developing
party because of the risk)?

� What is the value of different options that depend on exogenous
factors such as entry in new markets, when the circumstances
are favourable; to create make complementary products after
the successful entry of the developed product; to be able to
abandon the current project in the occurrence of new informa-
tion without losing a lot of resources; to deliver the product
as soon as possible and implement market skimming strategy,
when the concurrent are out of the market?

� How to distribute the assets into portfolio to reach the wanted
deviation level of the portfolio?

� What are the costs of opportunity to invest early for new un-
certain project that may lose value with the entrance of a new
concurrent or play it safe and invest in following stages, where
the returns are more certain, but less lucrative?

The chosen strategy must be pursued from the software develop-
ment team. The way to implement the product according to the
strategy goes with using different engineering methods. These are
the following (Barry W. Boehm and Kevin J. Sullivan, 1999):

� Information hiding modularity

� Architecture first development

� Risk-based spiral development models

� The value of delaying design decisions

� Components and product-line architectures

19

Using modularity, the project can be divided into smaller parts. Do-
ing so you can work on one part, while revised parts are waited to
be delivered. Another advantage is that single parts can be mod-
ified and made more suitable for new market entries. The phased
models for development, as the spiral model, enable intermediary
decision points. That is especially useful in costly projects, where
the project must be stopped as early as possible while there are not
indications for success. While climbing a mountain without the nec-
essary equipment, it is much better to return early as later.

The connection between software development models and the re-
spective business strategies unlocks a great potential. Instead of
leaving projects to be either successes or failures, they can be de-
signed in a way that gives them a present value. Then the project
has the chance to conform to the new changes. These changes either
increase or decrease the value of the project. The aim is to maximize
value with a flexible system that has chance to participate in future
gains.

The system designer has the duty to strategically manage the port-
folio with software components. The dynamic management of the
portfolio is needed because of the constantly changing evaluation
of the portfolio elements. If the trigger for a given element does
not come, it suffers a loss or completely loses its value, because the
option does not bring opportunities anymore. These triggers are
exogenous and can only be predicted within probabilities. Changes
can be big or small. Sometimes the actions that must be taken are
affecting only parts of the system, but it can also be in a large scale.
Monitoring of external factors, newly evaluating the components of
the portfolio, and making strategic decisions are part of the dynamic
management of the assets through software decision-making. Lastly
it must be mentioned that financial reflection is a subsidiary activ-
ity that help to create better understanding for strategy. It cannot
be viewed as the golden formula for successful projects. Software-
development is a very complex and demanding discipline and there
can not be supposed one single formula for ensuring perfection. The
aim here is to produce a surplus as the created outputs ensure the
stakeholders a better position and surpass the expended valuable
resources.

20

4 Open-source software and its economic sense

Before speaking of what kinds of benefits the open-source software
can offer, we must categorize the types of open source presented in
this work. In this section we will relate to community open-source
software and single-vendor commercial open-source software. The
prior one represents most open-source projects and has different con-
trol and ownership structure.

Community open source is controlled by community of stakehold-
ers. Examples for community open-source projects are the Linux
operating system and the Apache web server (Riehle, 2012).

Single-vendor commercial open source has only one stakeholder and
it serves him for a commercial exploitation. Examples for single-
vendor commercial open-source projects are MySQL, SugarCRM
and Alfresco.

4.1 Community open-source

Community open-source projects have meritocratic structure. They
are developed from volunteer programmers. The control is deter-
mined by ownership of copyright to the code (Riehle, 2007).

Nowadays non-profit foundations are having major role in the com-
munity open source and they possess the ownership over the prod-
uct. The projects are run by foundations members, who represent
the community of stakeholders. The community open source can
generate revenues from support and consulting services, derivative
products built on the community project and increased revenue in
ancillary layers of the software project (Riehle, 2007).

4.2 Single-vendor commercial open-source

To qualify as open-source firm the single-vendor open source must
provide the source code of the software and the program as free and
easy installable binary.

Single-vendor commercial open source do not accept contributions

21

to the code and own the full copyright to the code and the intel-
lectual property. They control the open-source project and create
business around the open-source software. The full control over the
software project is crucial, that is why these firms do not accept
outside contribution without copyright transfer from the creator.
However, ownership transfer can be evaded with receiving relicens-
ing rights.

The firm can provide the software in Paid-for versions to customers
under a commercial license. This dual-license strategy offers way
for commercial exploitation of an open source.

4.2.1 Business function of the open source release

Once the firm releases a software and it reaches the critical level
of engaged user community it can unleash a decisive effect over the
different business aspects. The problem with the growing of this
community are the support costs. When support is needed, only
the firm, which have developed the software, can provide it. This
can lead to a situation, where costs outgrow the cash flow. By
putting open source on a disposal, the problem can be solved as the
community becomes self-supporting. The open source accelerates
the adoption of the software and avoids support costs. The single-
vendor commercial firm hosts a software forge with integrated tools
like forums and wikis to encourage communication between users.
Users which provide feedback and solutions are rewarded. This way
the community becomes self-sufficient when it comes to supporting
and benefits of the resulting community are not limited to support
costs, but are also connected to sales, marketing, product manage-
ment and product engineering (Riehle, 2012).

Once the firm releases a software and it reaches the critical level
of engaged user community it can unleash a decisive effect over
the different business aspects. The problem with the growing of
this community are the support costs. By putting open source on
a disposal, the problem can be solved as the community becomes
self-supporting. The open source accelerates the adoption of the
software and avoids support costs.

The single-vendor commercial firm hosts a software forge with in-

22

tegrated tools like forums and wikis to encourage communication
between users. Users which provide feedback and solutions are re-
warded and this way the community becomes self-sufficient when
it comes to support. That also reduces the support costs of the
paying customers, as they often prefer to search for solutions in the
community tools to save time in communication via phone calls and
emails. And the benefits of the resulting community are not limited
to support costs, but are also connected to sales, marketing, product
management and product engineering (Riehle, 2012).

When it comes to sales, the open-source software makes it possible
to track potential buyers. The potential customer will download,
install, and use a product as in the illustration below. On the other
hand, the firm can track the user’s activity through download reg-
istration. Usually, the open source will send back usage informa-
tion. That transforms the traditional pre-sales-to sale activities to
a user-to-customer transition, which is a decisive benefit in terms of
customer acquisition costs (Riehle 2012).

Image source (Riehle, 2012).

In setting where there is no open source the firm must engage in
marketing activity to promote its product to the customer. Tradi-
tional way of doing this are advertisements and trade shows. The
user community could serve as a replacement for these costs. The
good testimonials of users are credible sources for effective promo-
tion. Study shows that the Sales and Marketing costs are 2.3 times
greater than research and development costs (Augustin, 2007). This
creates a huge competitive advantage against competitors. The re-
duction of these costs could play a vital role and increase chances
of commercial open-source start-ups to live up to successful times
in comparison to traditional firms. In addition, if there is no open

23

source, the customer will not be familiar with the usage of the soft-
ware, hence the customer is much more likely to purchase if he is
already familiar with the product. This is a huge advantage from
a buyers’ perspective and this setting of prior relationship can be
created with open-source software.

4.2.2 How the open-source develops your product?

The users of the open-source software have their own needs and own
ideas what they want from a software. Taking their suggestions and
feedback is important to improve your product (von Hippel, 2005).
The open source can be a big mine for product innovation for the
firm. By providing open source the firms give the opportunity to
the users to innovate and cocreate for free. And if the contribution
consists of ideas rather than code, that is also a great deal.

The open source is a way for product managers to engage with users.
That could lead to improvement of current futures and adding of
future ones as well as creating a product roadmap. This will have
decisive contribution to the product management. That is crucial
for big software projects, because the understanding of users’ needs
gives the direction of product architecture. False direction in this
mean can lead to large amount of sunken costs.

In addition, the observations are not limited only to the current cus-
tomers, but also non-paying users, students, and researchers. This
gives a broader perspective to the product managers and can help to
understand different issues. For example, what keeps the non-users
of becoming users or existing users to convert to customers (Riehle,
2012).

Important aspect that must be considered is the features that the
open source will restrict in comparison to the paid version. Relevant
restriction can annoy the open-source community and too lucrative
free version can cut revenues. Thus, the product managers must de-
cide which enterprise features are not important for the open-source
community users and which features must be present in both ver-
sions. Finally, we have the advantage of community contribution
in terms of product engineering. When the community is provided
with the latest release of a software product it will give feedback

24

with issues and potential bugs. Very often the open-source commu-
nity would provide even the solutions like bug fix. That would not
be expected at first hearing, but it is often the case from what the
practitioners have experienced (MIT, 2008).

5 The motivation to be part of community open-
source project

The motivation behind the participation in a community open-source
project may be versatile since the work the developers put in these
projects are volunteer and they do not get paid for their contribu-
tion. To put work on open-source projects the developers are driven
by materialistic and non-materialistic values.

5.1 Materialistic motives in open-source participation

Their work though indicates abilities, which are esteemed among col-
leges and possible employers. The programmers list these projects
on their resumes. This volunteer work can increase their lifetime
revenue stream and reputation. It is feasible that they may have
prospects for salary increase or promotion. From the perspective of
software developer working on community open-source projects de-
velops his non-firm specific knowledge, which increases his chances
to be employed by another firm. Thus, if the programmer does not
want to be tied to his current employer it is reasonable to invest time
in open-source projects. That will also increase his bargaining power
with his current employer. It is empirically verified that high-rank
contributors (committers) in Apache Software Foundation projects
earn higher compensations (I-H. Hann).

There is a study from Spence (1974) that shows the quality of work-
ers by the level of education they pursue. Summarized it costs less
effort to capable persons to pursue a degree. Thus, the less capable
persons do not find worthwhile to pursue higher degrees, because
the effort they made is not worth the potential gain in wage. The
same principle could be an indicator for the quality and efficiency
of the programmers, who contribute to open-source software.

25

5.2 Non-materialistic motives in open-source participa-
tion

The motivations may also be of non-monetary kind such as enjoy-
ment or ego gratification (E. Haruvy, F. Wu, and S. Chakravarty).
The self-fulfilment aspect of the work and success is decisive trig-
ger behind the effort. The same applies to the need of recognition
among the colleges. This work can result in fame and respect to the
contributor.

Another motive of the developer could be the pure altruistic motive
for the welfare of the society. That could derive from the perception
of the developer that the large software companies possess too much
power in unjustifiable way. This power should not be exclusive for
the big corporation and the open-source projects are way to stand
upon that. These convictions lead to increased contribution to the
open source (E. Haruvy, F. Wu, and S. Chakravarty).

6 How similar/different are open-source and pro-
prietary firms in their production and selling
approaches?

At first sight we may think that the proprietary firms have bet-
ter strategic planning and hence can better exploit market oppor-
tunities. The study of Campbell-Kelly and Garcia-Schwartz (2010)
shows that the software development in proprietary and open-source
firms link up in a similar way. Open-source firms invest on research
and development and execute merger and acquisition of smaller firms
to incorporate software development teams. They can manage their
investments and portfolios as they acquire teams and software pro-
grams that others have developed. There are similarities in the pro-
duction and the selling of software products when comparing pro-
prietary and open-source software companies. To penetrate market
opportunities, open-source firms also rely on dual-licensing strate-
gies, but they restrict the access to the source code.

We will compare two different software projects. The first one has
emerged as a proprietary product and the second one as an open
source.

26

6.1 The evolution of Microsoft and its research and devel-
opment costs

Microsoft was found in 1975 as a small company developing lan-
guage translators. In 1980 they diversified in operating systems by
licensing the source code of Unix from the owners of the company.
Computers back were special machines and the idea of individuals
owning a computer for personal needs was unusual. In 1980 IBM
was searching for operating system to its personal computer. The
Unix system was too heavy for the limited computational power of
the personal computer. Microsoft presented an operating system to
IBM, which one of the Microsoft’s workers has hacked from Seattle
Computer Products, replacing their name with Micro-soft (the ini-
tial name of Microsoft). They made a deal with IBM for the delivery
of operating system code for their new personal computer. After the
deal was made, they bought the operating system from Seattle Com-
puter Products for 5000 US dollars. They improved it and shipped
the product under the name MS-DOS. The first version of the soft-
ware contained 4000 lines of code (Ichbiah and Knepper, 1991, p.
252). During the years it was updated and evolved. Interestingly
Microsoft tried to migrate users to XENIX, which is operating sys-
tem of Unix, but it was the market’s choice to stay with MS-DOS.

Microsoft made three strategic decisions to solidify its position as a
market leader. Back they had 40 percent of the market share. They
developed a graphical interface for more user-friendly environment,
invested 50 million in new generation OS/2 in cooperation with IBM
(Zachary, 1994, p. 90) and created Microsoft NT, new multitask-
ing software, which is a long-term investment for operating system
powerful enough to replace minicomputers in enterprise computing
environment (Schlender and Ballen, 1995). After a very success-
ful launch of version 3.0 Microsoft gave up on OS/2 worsened the
relationships with IBM. The plan was to make Windows the next
generation operational system merging MS-DOS with NT. That re-
quired new investment in the NT project, and they followed. The
new product had 4-5 million lines of code and included client and
server components.

The 4.0 version of Windows NT came in 1996. It included new

27

features like FrontPage website creation and management tool. Mi-
crosoft Explorer was developed for estimated 100 million dollars.
There are not publicly stated information for research and develop-
ment costs for Microsoft Windows, but the estimated cost is around
25000-30000 programmer years and can be calculated as 5-6 bil-
lion US dollars. This is in harmony with the stated from Microsoft
research and development const of 28,5 billion dollars between 1989-
2003, where big proportion of the costs are consumed in the devel-
opment of NT (Campbell-Kelly and Garcia-Schwartz, 2010).

6.2 The evolution of Red Hat Linux its research and de-
velopment costs

The software and computer coding has emerged as an open-source
discipline in the 1950s. During the next decade, the proprietary
firms imposed have imposed themselves on the market. It was not
until early 1980s when the open source made a comeback due to
Richard Stallman, who left behind the legal scheme for licensing,
which ensured that derivative products from open source remain
as such. The most popular open-source operating system today is
Linux. It is developed by Linus Torvalds and other volunteer partic-
ipants throughout the world. The first version of Linux is released
in 1991 consisting of 10000 lines of code. In the next years with
the volunteer work of developers the system progressed and became
functional and robust. Version 2.6.0 released in 2003 contains 6 mil-
lion lines of code.

To create value for the user, much more than operating system
is needed. What the user needs are applications like email, se-
curity programs, web servers, different kinds of business programs
like database systems. These were created simultaneously with the
progress of Linux. Their integration in the system and use though
was complicated and not as easy as in proprietary software. Dis-
tribution system were developed from open-source software contrib-
utors, which were usually based in universities. They made the
system more complete and ready to use, but software still lacked
the needed support from the individual users and businesses. This
gap was filled from firms, which developed business models for com-
mercializing open source. Red Hat was one of these firms. They

28

offered consultancy and assistance through telephone calls. By 1998
Red Hat were having 56 percent market share (Campbell-Kelly and
Garcia-Schwartz, 2010).

Red Hat has two crucial contributions to Linux. The Anaconda
Installer, which automates the installation, and the Red Hat Pack-
age Manager, which aggregates different elements into the software
distribution. Because of the license agreement these contributions
are again open source and other firms quickly copied the investment
of Red Hat. But Red Hat had the strategy to release an updated
version of the Red Hat Linux. The improved features of the new
release, which is tested by a large group of users and the prestige
gained by investing in research and development have paid off for
Red Hat, whose software was awarded with product of the year in
1996 by Info World’s (Campbell-Kelly and Garcia-Schwartz, 2010).

In 2001 the 7.1 version of Linux consisted of 30 million lines of code,
which was close to Microsoft at that date. The estimated cost for
development were 8000 developer-years, that is equivalent to 1 bil-
lion dollars. The expenditure for research and development of Red
Hat for the first 5 years of the company were 40 million dollars. This
amount is far from expenditure of Microsoft, but the expenditure’s
relation to revenues was the same as that of the proprietary giant.

The Assumption that the software products of open-source firms are
dependent only on volunteer contribution is false. These firms have
their own strategies and ongoing investments. The share of research
and development spending to the revenues of the investigated case
with Red Hat is larger than that of Microsoft and other proprietary
firms. During 2001-2008 the open-source company spend on aver-
age 18 percent of their revenues on research and development. The
share of Microsoft is 17 percent and those of IBM only 6 percent.

Here we can see the Red Hat’s revenues and expenditure on research
and development

29

Image source (Campbell-Kelly and Garcia-Schwartz, 2010).

6.3 Similarities between business approaches between open-
source and proprietary firms

As the microprocessors became more powerful and their costs sunk,
the client-servers became more affordable in the 1990s. The micro-
processor producer Intel was effective enough to serve to servers.
This significantly reduced the price for businesses to use the new
technology. The operating systems of Microsoft and Linux were
more suitable for these new generation server processors because
they were cheaper than the established Unix.

6.3.1 Red Hat’s acquisition costs

In this section we want to show that there is a convergence in the
software industry concerning the strategies of the open source and
proprietary firms. The assumption that the open-source firms rely
only on volunteer programmers to develop its products is false, as
discussed in section above. To develop a winning business strat-
egy the open-source firms, have variety of different costs such as
for acquiring other firms’ products and competent personal. Red
Hat is again a good example for showing business strategy case for

30

needed acquisitions for prosperity in the market and interrelations
with other firms, both open-source and proprietary.

We take for usual that proprietary firms do acquisitions to leverage
their products. Oracle made 56 acquisitions in the years between
2001 and 2008. The value of the acquired companies was 34.2 billion
dollars. During the same period, the top 10 software firms spend
100 billion dollars. But they were not only proprietary firms that
engaged in these strategies.

In 1999 the initial public offering of Red Hat took place. With the
raised capital the company had the vision to offer a full e-commerce
solution. There were different companies specialized in different
fields such as payment processing (Hells’ Kitchen Systems), applica-
tion development software (Cygnus) and website security (C2Net).
There were also other firms, which were acquired from Red Hat
(Planning Technologies, Aktopia, Bluecurve). The common between
these firms was, that they were all open source and Red Hat could
use their products as free rider. But the acquisition of the firms
puted Red Hat in a suitable position for their consulting services.
Another tale of the story is the acquired talent from these compa-
nies. As we see in this example the behaviour of Red Hat was no
different than other proprietary firms. They had research and devel-
opment costs for the development of their services and acquisition
costs. We can state that to have a stable position in the market,
open-source firms have similar cost structure (when it comes to re-
search and development) as the proprietary firms. Free riding is not
the proper strategy for long term, scalable and large investments.

6.3.2 Transition to dual-licensing of open-source firm

The business strategy of Red Hat was very promising, and their
revenues grow constantly. They offered the Red Hat Linux software
bundled with support service to individual customers and profes-
sional service to businesses. IBM, Compaq, Dell, and HP imple-
mented the operation system in their devices, because the customers
were interested in products with support services. That gained Red
Hat a stable market share. Another positive circumstance was that
proprietary vendors like SAP and Oracle certified their products
only for primary distributions firms (mainly Red Hat and Suse).

31

Even though Red Hat succeed in establishing on the market, their
strategy still had a crucial pitfall. Because of the GPL license, their
product was available on the internet and other firms could dupli-
cate it and sell the product through price-dumping. As a solution
Red Hat decided to go for a change in their strategy and they imple-
mented the dual-licencing strategy. Red Hat Linux was abandoned,
and the Red Hat Enterprise Linux (RHEL) was introduced together
with Fedora, which was the free version that ensured the further de-
velopment of the Linux from the volunteer community. RHEL was
stable, commercial product for businesses. The product was bun-
dled with support and maintenance. It also included seven years
guarantee and upgrades from the Red Hat’s infrastructure.

The dual-licensing structure combined two advantages. First, Red
Hat could profit from the development coming from the open-source
community to improve their product. Second, the copyright cum li-
cense enables the company to make revenues. This can be viewed
as price discrimination, as the customers who do not want to spend
time compiling the code can buy the RHEL subscription.

The strategy of dual subscription increased the share of the rev-
enues made by software licenses. At its founding years the company
counted on services as sources of income. At the end 1990s the half
of the company’s revenues came from services, whereas in the last 3
years until 2008 the share of the subscriptions has grown in a such
way that they represent more that two thirds of the incomes.

Interestingly the opposite trend was true for propritary firms. While
open-source firms gained new shares in subscribtions, the propri-
etary firms increased their revenues in services. We observe conver-
gence between open-source and proprietary enterprises.

6.4 Applications layer production and selling strategies

The application software is oriented towards versatile needs and
there can be found very profitable niches. Thus, it can be stated
that the applications software market is a place of various opportu-
nities in comparison to more fixed software layer.

While there are open-source software products for operating sys-
tems and middleware, open-source applications for some sectors like

32

finance. One reason for that is, that writing application requires to
shape them in a user-friendly way. This increases the cost of the de-
velopment and requires user training programs and usability tests
(Campbell-Kelly and Garcia-Schwartz, 2010). Successful applica-
tion can be written when the developers can see through the eyes
of the end-user. One example for successful software is the Firefox
browser. While browsing in internet the experience for developer is
not different as to the normal user.

Another obstacle for the applications is the need for specific do-
main knowledge to frame them. To write applications for industries
like finance and healthcare the designer of the program must have
sophisticated understanding of the requirements of these services.
In the 1990s when the open-source community was dominated by
young programmers, who have newly graduated from universities,
the young developers did not have the needed expertise and knowl-
edge to develop this kind of projects. With the maturation of the
open-source paradigm this is turning around and ‘innovation net-
works’ emerge as called from von Hippel (von Hippel, 1988).

6.4.1 Development of proprietary firm SAP

During the late 1960s the development of mainframe application
software was expensive and project we usually based on contrac-
tual orders specific for a given domain. At some point it become
reasonable to offer a service as software package instead of custom
solution. This made the products more affordable for the customers
and development costs were reduced. SAP is found in Germany
1972. They wrote a custom-written accounting package for enter-
prise in chemical industry and kept the rights for the software. They
enlarged the basis of customers and industries they work with and
accumulated great amount of knowledge. In 1981 they launched
R/2 ERP. This was the transition from service to multifunctional
product.

The constant evolution of SAP occurred thanks to the accumula-
tion of knowledge and capabilities in business processes and orga-
nizational domains. In addition, SAP would augment its software
when that was requested from the customer to adapt to its need. In
an open-source version the customer would supply the code for the

33

new future, in SAP case customers requested the firm, that would
do that for them and keep the ownership over the code.

6.4.2 Development of open-source firm Compiere

Compiere is found in 1999 and its early years targeted small and
medium firms for its ERP software. Proprietary firms did not
target the small firms because of the high costs and complexity
of the software. Compiere’s product was made of basic modules
in inventory management, accounting, and customer relationship
(Campbell-Kelly and Garcia-Schwartz, 2010). The sources of in-
come were as usual for open-source firms the support services and
training offer.

For the development of their product, they used third party con-
sultant for the framing of the software-capabilities. The free access
to the software made possible the direct implementation of the new
features from third parties, which reduced costs by the develop-
ment. A proprietary firm would request the new feature and write
the code themselves. To remove obstacles for derivative works Com-
piere used Mozilla Public License. That would allow the customer
to not share their modification to keep competitive advantage and
confidentiality. Nevertheless user-organizations made huge impact
on the development. For example, one user shared credit-card pro-
cessing module (Koch, 2004). This allowed the company to have
user-driven innovation, which was discussed in section 2, subsection
“How open source develops your product”as an advantage of open
source.

Both Compiere and SAP created communities, which helped to in-
novate their products. The difference was that in the case of SAP
the contributors and consultants identified the needed functional-
ities, whereas by Compiere they could write into the source code
either and therefore we can state that they brought it to the next
dimension and reduced innovation costs alongside.

34

6.5 Equalization in the selling approach

As we discussed already, SAP relies on both license services and
consulting services for generating its revenues. Compiere’s business
strategy relied fully on support and training services. That, though,
changed, when Compiere brought the three different versions of its
product to the market. Community edition with GPL license, that
can be freely downloaded. Standard edition with GPL license, that
includes support and enhanced features. Finally, the professional
edition with MPL license, that is the most advanced version and
free from the engagements of GPL license. Here we see that there
is a convergence in the production and selling approach between
open-source and proprietary companies. Both Compiere and Red
Hat rely on dual-licensing model to generate values. On the other
hand, proprietary firms also give free versions on disposal for reach-
ing the needed large scale of user size and to reduce support costs.

7 Conclusion

The existence of open source changes the structure of the market
and redefines the ways the firms organize their business strategies.
In this seminal work we suggested that every software development
project is an investment activity that has cost-benefit structure and
suggested that the implementation of the product by different en-
gineering methods must be with coherence of the firm’s long-term
strategy. While managing the product portfolio, the firms should
consider the future possibilities for synergies and opportunities that
may arise. By defining product portfolio tactical matters should
also be concerned, as better models for cost estimation or the effect
of learning curve.

We examined what kinds of costs come with software development
projects and showed the benefits that a free version may provide to
reduce these costs. Finally, the examination of business case stud-
ies with open-source and proprietary firms, showed that there is
a trend for convergence in the way software is produced and sold.
Both open-source and proprietary firms have research and devel-
opment costs, that represent similar shares of their revenues. They

35

both execute acquisition strategies, as they buy synergetic and com-
plement products from other companies. Historically open-source
companies relied on consulting services, now they sell products us-
ing dual-license strategy. Both types of firms use the advantages of
open source and the contrasts become less significant.

36

8 Sources

Boehm, Barry W.; Sullivan, Kevin J. (1999) Software Economics
(University of Southern California and University of Virginia).

Campbell-Kelly, M.; Garcia-Swartz, D. (2010) The Move to the Mid-
dle: Convergence of the Open-Source and Proprietary Software In-
dustries, International Journal of the Economics of Business, 17:2,
223-252 Collins, J.C.; Porras, J.I. (1997) Built to Last: Successful
Habits of Visionary Companies (Harper Business).

Cusumano, Michael A. (2004) The Business of Software (New York:
The Free Press).

Haimes, Y.Y. (1998) Risk Modeling, Assessment, and Management
(Wiley).

Ichbiah, D.; Knepper, S.L. (1991) The Making of Microsoft (Rock-
lin, CA: Prima Publishing).

Koch, C. (2004) Open-Source ERP Gains Users, CIO, 1 February.

MIT (2008) An interview with Marten Mickos: the Oh-So-Practical
magic of open-source innovation. (MIT Sloan Manage Rev 50(1),
15).

Riehle, D. (2007) The economic motivation of open source: stake-
holder perspectives (IEEE Comput, 40(4):25–32).

Riehle, D. (2012) The single-vendor commercial open course busi-
ness model (Inf Syst E-Bus Manage 10: 5–17).

Schlender, B.; Ballen, K. (1995) What Bill Gates Really Wants,
Fortune, 16 January. Shankland, S. (2006) Oracle has yet to prove
Linux cred, CNET News, October 27. Avail

Statista (2020)https://www.statista.com/statistics/203428/total-enterprise-
software-revenue-forecast/#:~:text=Enterprise%20software%20total%20worldwide%20expenditure%202009%2D2021

&text=In%202021%2C%20IT%20spending%20on,percent%20from%20the%20previous%20year.

Trigeorgis, L. (1997) Real Options: Managerial Flexibility and Strat-
egy in Resource Allocation (Cambridge, Massachusetts: MIT Press).

Zachary, G.P. (1994) Showstopper! The Breakneck Race to Create
Windows NT and the Next Generation at Microsoft (New York:
The Free Press).

37

von Hippel, E. (1988) The Sources of Innovation (New York: Oxford
University Press). von Hippel, E. (2005) Democratizing innovation
(MIT Press, Cambridge).

38

