

Seminar Paper

JavaFX: History, Concepts, Nutshell Examples
WU Vienna University of Economics and Business

Business Information Systems Seminar – 4167

Author:

Elise Landman, h1551237

Submitted on

June 3rd, 2020

Advisor:

Univ. Prof. Mag. Dr. Rony Flatscher

1

Declaration of Authorship

I assure:

to have individually written, to not have used any other sources or tools than

referenced and to not have used any other unauthorized tools for the writing of this

report.

to never have submitted this report topic to an advisor neither in this, nor in any

foreign country.

that this report matches the report reviewed by the advisor.

Date: June 3rd, 2020 Signature: Elise Landman

2

Abstract
First released in 2008 by Sun Microsystems, JavaFX built upon AWT and Swing, two tools

for building impressive Graphical User Interfaces (GUI) with the programming language

Java. JavaFX also supports the famous “write once, run anywhere” paradigm, making it even

simpler for developers to create GUI apps for desktops as well as mobile computers without

the need of separately writing in different code for each platform. Therefore, JavaFX can be

easily learned and adopted by beginners and advanced developers on either Windows, Mac

OS or Linux and enables development of apps for desktops and mobile devices. This report

focuses on the history of JavaFX, includes a quick start guide to start developing and

demonstrates some nutshell examples and code snippets for serving as development

references.

3

Table of Content

Declaration of Authorship .. 1

Abstract ... 2

1. JavaFX – Introduction and General Overview .. 4

2. History of JavaFX ... 5

2.1. The Initial Idea and Life Before JavaFX ... 5

2.1.1. Abstract Window Toolkit (AWT) .. 5

2.1.2. Swing ... 6

2.1.3. JavaFX ... 7

2.2. Timeline - Past Releases and Versioning .. 9

2.3. Recent Release and Features ..12

3. JavaFX Concepts ..13

3.1. Environment and Installation Prerequisites ...13

3.2. The JavaFX Architecture ..17

3.3. Scene Builder ...18

4. Developing with JavaFX ..23

4.1. For Desktops with Windows ...23

4.2. For Desktops with Other OS (MacOS, Linux, etc.)..23

4.3. For Mobile Devices...23

4.4. For Raspberry Pi ..26

5. Getting Started with Development ...28

5.1. First “Hello World” JavaFX Program ...28

5.2. Various Development Examples...32

5.2.1. General-Purpose Text Fields ...32

5.2.2. Password Text Fields ..32

5.2.3. Buttons ..33

5.2.4. Application Window Icon ...34

Summary and Conclusion ..35

Bibliography ...36

List of Figures ...39

4

1. JavaFX – Introduction and General Overview

JavaFX is a software platform for building powerful Graphical User Interfaces (GUI) based on

the programming language Java. These can include desktop applications and Rich Internet

Applications (RIA) which can be executed on various different devices.

The JavaFX framework makes it easy to create next-generation and high-performance client-

side applications while taking advantage of modern Graphic Processing Units (GPU) and

providing a user-friendly interface. It enables users to easily apply animations with graphics

and user-interface controls (Taman, 2015).

The standard toolkit supports Microsoft Windows Vista, 7, 8 and 10, Linux and MacOS for

desktops. JavaFX can also be run on mobile devices with various operating systems (OS)

such as Android, Windows mobile devices and Apple iOS devices (iPhone and iPad) and

even on embedded devices such as Raspberry Pis (Wikpedia.org, 2020).

The next following chapters will lead to through the history, the underlying architecture, a

quick start guide and some development examples of JavaFX.

5

2. History of JavaFX

2.1. The Initial Idea and Life Before JavaFX

The roots of JavaFX date back to the mid-90s, where it all started when Sun Microsystems

released the general-purpose programming language Java. It followed the famous “Write

Once, Run Anywhere (WORA)” principle, which promised an implementation on all popular

platforms and operating systems (Wikipedia, 2020).

Shortly after the Java release, Sun Microsystems created a Java library which would simplify

the development of desktop applications and its graphical user-interfaces (GUI). This library

was originally (and still is) called Abstract Window Toolkit (AWT). It allows for creation of GUI

components and event handling of those components (Wikipedia, 2020). Soon afterwards,

Sun Microsystems released AWT’s successor Swing, which provided the user with even more

powerful GUI components (JavaTpoint, 2020). In 2008, JavaFX was introduced and

additionally supported more rich GUI components with increased advanced look and feels

(Educba, 2020).

The following sections will highlight the detailed characteristics of AWT, Swing and JavaFX.

2.1.1. Abstract Window Toolkit (AWT)

AWT was first released with Java in 1995 by Sun Microsystems and is the standard user-

interface widget toolkit for developing GUI applications in the programming language Java

(Wikipedia.org, 2020). The AWT library can be imported into the Java environment through the

command java.awt and its functions will become accessible. The package now allows

creation and design of GUIs within the Java environment.

The example in figure 1 below shows the few lines of code that are necessary for creating a

basic window user-interface as in figure 2 (JavaTpoint.com, 2020).

6

Figure 2 AWT basic window in Microsoft Windows XP

(JavaTpoint.com, 2020)

One of the main characteristics of AWT is its components being platform dependent and thus

being heavyweight (JavaTpoint, 2020). This can be observed with the development of user-

interfaces, where AWT makes direct use of the underlying operating system’s (OS) native

graphical appearance. Therefore, when creating a checkbox, it will look differently when

running the application on Microsoft Windows than on MacOS, even though it was written with

the exact same lines of code. The different interfaces on each OS can be favorable for some

development use-cases, but can also be a disadvantage when the goal is to develop a program

which should constantly retain the exact same interface on multiple systems (Taman, 2015).

AWT became part of the well-known Java Foundation Classes (JFC), the application

programming interface (API) for graphical implementations with Java (Wikipedia.org, 2020).

2.1.2. Swing

In 1996, AWT was succeeded by Java Swing which was developed to support a much more

sophisticated collection of GUI components. One of the major features introduced in Swing

was its platform-independency, therefore now allowing users to apply pluggable “look and feel”

interfaces (JavaTpoint, 2020). Swing components were not anymore implemented by

operating system-specific code but were written in their own Java code, making the framework

lightweight. A standardized Java Swing look and feel “Ocean Look and Feel” is shown in figure

3 (Wikipedia.org, 2020).

import java.awt.*;

class First extends Frame{

First(){

Button b=new Button("click me");

b.setBounds(30,100,80,30);

add(b);

setSize(300,300);

setLayout(null);

setVisible(true);

}

public static void main(String args[]){

First f=new First();

}}

Figure 1 AWT basic window code
(JavaTpoint.com, 2020)

7

Figure 3 Swift basic widgets with the standard “Ocean Look and Feel”

Additionally, several new features were added such as f. e. tabbed panels, scroll panes, trees,

tables, and lists (Yap, 2003). These could now share the same appearance on every OS.

Java Swing is included in the JFC (Wikipedia.org, 2020).

2.1.3. JavaFX

12 years after the initial release of Java Swing, Sun Microsystems released JavaFX in

December 2008. With the intention of being Swings successor and replacement, JavaFX was

to become the standard GUI library for the Java Development Kit (JDK) (Wikpedia.org, 2020).

Oracle (which acquired Sun Microsystems in April of 2009) states in the JavaFX FAQ, that

Swing will remain part of Java SE “for the foreseeable future”, although intended to be replaced

(Oracle, 2020).

The main difference between JavaFX and its predecessors is the representation of the GUI

data structures as a scene graph format. The data structure of a scene graph is often

implemented for vector-based editing of graphics, as is the case for example in modern video

games. This underlying framework allows a description of the graphical interfaces in the

commonly used XML and CSS formats, which both enable a much higher variety and flexibility

in the appearance of the final program’s GUI (Wikpedia.org, 2020).

JavaFX targeted multiple features: one of the primary goals was to be accessible on multiple

devices, also following the Java “write once, run anywhere” paradigm (Taman, 2015). This

intention can also be derived from the following quote from 2009 by Param Singh, former senior

director of Java marketing at Sun Microsystems:

“Our vision of providing a programming model that spans across multiple screens is

one of the core fundamental changes versus development in the past.” (Lau, 2009)

8

Although JavaFX on itself does not support mobile devices, Sun Microsystems released

JavaFX Mobile with JavaFX version 1.1 (see 2.2 Timeline – Past Releases and Versioning) in

February 2009 (Wikpedia.org, 2020).

About a year after the acquisition by Oracle, the JavaFX framework was made part of the

Oracle JDK. The Oracle JDK is Oracle’s officially supported Java SE version (Oracle, 2020).

A JDK is a Software Development Kit (SDK) used by developers to create Java programs

which can be executed by the Java Virtual Machine (JVM) and the Java Runtime Environment

(JRE). There is often confusion when distinguishing the frameworks, although there is a clear

difference: the JDK is a package of tools for developing software based on Java and the JRE

is a package of tools for running the Java code (Tyson, 2020).

There are multiple JDKs from various contributors and vendors available for development with

Java. Oracle offers its own JDK with new version releases every three years and licensed

under the Oracle Binary Code License Agreement (Baeldung, 2019). As announced by Oracle

in April 2019, this license is free to use for personal development but includes constraints when

it comes to the commercial use. The commercial development should be supported by an

additional commercial license through a Java SE subscription model (Java, 2019). OpenJDK

is the open source version released under the GNU General Public License (GNU GPL)

version 2 and will have new version releases every six months (Baeldung, 2019). While the

Oracle JDK is completely developed by Oracle, the OpenJDK has various contributors to it

including Oracle itself, OpenJDK, the Java Community and other companies like IBM, Apple,

SAP and many more (Baeldung, 2019). As of 2020, the Oracle JDK and OpenJDK are the

most common implementations used on the Java development market. Nevertheless, there

are many other JDK implementations by various vendors, as for example Azul Zulu, Eclipse

OpenJg, Amazon Corretto, etc. (Baeldung, 2019). The JVM Ecosystem Report 2020 study

conducted by Snyk highlights which JDKs are most used among Java developers, as shown

in figure 4 (Vermeer, 2020).

9

Figure 4 Snyk JVM Ecosystem Report 2020: JavaSDK Market

With the release of the JDK 11 in September 2018, Oracle announced that JavaFX would be

separated from the JDK and downloadable as a standalone module (Smith, 2018).

As of April 2020, the latest version of JavaFX is version 14. In the following passage, a brief

timeline of past JavaFX versions and their main features will be highlighted.

2.2. Timeline - Past Releases and Versioning

The following table lists the major JavaFX releases (minor features listed in the original release

notes without significant changes have been excluded for purposes of simplified visualization).

Significant implementations and feature changes have been highlighted in bold. (Wikpedia.org,

2020)

Date JavaFX Version Release Notes Released by

Dec 2008 1.0 initial release Sun Microsystems

Feb 2009 1.1 (Franca) • included JavaFX for mobile Sun Microsystems

Jun 2009 1.2 (Marina) • Beta support for Linux and Solaris

• Built-in controls and layouts

• Skinnable CSS controls

• Built-in chart widgets

• JavaFX I/O management, masking

differences between desktop and

mobile devices

• Speed improvements

• Windows Mobile Runtime with Sun

Java Wireless Client

Oracle Corporation

10

Apr 2010 1.3 (Soma) • Performance improvements

• Support of additional platforms

• Improved support for user interface

controls

Oracle Corporation

Aug 2010 1.3.1 • Quick startup time of JavaFX

application

• Custom progress bar for application

startup

Oracle Corporation

Oct 2011 2.0 (Presidio) ;

beta released in

May 2011

• A new set of Java APIs opening

JavaFX capabilities to all Java

developers, without the need for them

to learn a new scripting language.

Java FX Script support was dropped

permanently.

• Support for high performance lazy

binding, binding expressions, bound

sequence expressions, and partial

bind re-evaluation.

• Dropping support for JavaFX

Mobile.

• Oracle announcing its intent to

open-source JavaFX.

• JavaFX runtime turning to be

platform-specific, utilizing system

capabilities, as video codec available

on the system; instead of

implementing only one cross-platform

runtime as with JavaFX 1.x.

Oracle Corporation

Apr 2012 2.1 • First official version for OS X

(desktop only)

• H.264/MPEG-4 AVC and Advanced

Audio Coding support

• CoolType text

• UI enhancements including combo

box controls, charts (stacked chart),

and menu bars

• Webview component now allows

JavaScript to make calls to Java

methods

Oracle Corporation

11

Aug 2012 2.2 • Linux support (including plugin and

webstart)

• Canvas

• New controls: Color Picker,

Pagination

• HTTP Live Streaming support

• Touch events and gestures

• Image manipulation API

• Native Packaging

Oracle Corporation

Mar 2014 8 ; now with same

numbering as the

Java versioning

• Support for 3D graphics

• Sensor support

• MathML support, with JavaFX 8

Update 192

• Printing and rich text support

• Generic dialog templates via inclusion

of ControlsFX to replace JOptionPane

as of JavaFX 8u40

Oracle Corporation

 9 • JEP 253: Prepare JavaFX UI Controls

and CSS APIs for Modularization

Oracle Corporation

Sep 2018 11 • First release that was decoupled

from the JDK

• MathML support, with JavaFX 11

• FX Robot API

Mar 2019 12 • Multiple bug fixes

• Reintroduced JFR Pulse Logger

• Support mouse forward/back buttons

for scenegraph

• Implement Accelerated composition

for WebView

etc.

Sep 2019 13 • Multiple bug fixes

• HTTPS for downloading all build

dependencies

• Supports static build for macosx

• Add support for e-paper displays

etc.

Mar 2020 14 See chapter 2.3. Recent Release and

Features

12

Upcoming

(as of May

2020)

15 ; early-access

builds available

As can be derived from the above table, with the release of version 11, Oracle decoupled

JavaFX from the JDK making it a standalone module and clear the way for new contributors

(Krill, 2018). As of May 2020, JavaFX version 15 is the upcoming new version of JavaFX.

2.3. Recent Release and Features

As can be derived from the table in chapter 2.2, the latest version is JavaFX version 14

released in March 2020. The JavaFX module still comes separated from the JDK and includes

some of the following bug fixes, security improvements and feature enhancements (Vos,

2020):

Bug fixes:

• Duplicate symbols when building static libraries

• Bindings class gives a lot of unneeded 'select-binding' log messages

• Dialog's preferred size no longer accommodates multi-line strings

• Remove use of deprecated finalize method from JPEGImageLoader

• JavaFX: poor printing quality for Region nodes

Security fixes:

• Improve XSLT processing

• Improved internal validations

• Better formatting for numbers

Feature enhancements:

• TableSkinUtils should not contain actual code implementation

• Add tabSize property to Text and TextFlow

• Support HTTP/2 in WebView

• Add property to disable Monocle cursor

• Port Linux glass drag source (DND) to use gtk instead of gdk

Above listed are only a chosen amount of updates – for the complete listing, please see the

official JavaFX 14 release notes.

13

3. JavaFX Concepts

The following section goes through the first-time installation steps of Java and JavaFX. For

complexity reduction, this tutorial will be focusing on the installation on a Windows desktop

operating system only. JavaFX will be demonstrated using the IntelliJ IDEA integrated

development environment (IDE), since this is to date the most used IDE among developer

community, as shown in the JVM Ecosystem Report 2020 study conducted by Snyk (Vermeer,

2020).

Figure 5 JVM Ecosystem Report 2020: Main IDE

The software and application versions demonstrated in this report include: OpenJDK version

14, JavaFX version 14 and the IntelliJ IDEA Community Edition version 2020.1 on a Windows

10 desktop computer.

3.1. Environment and Installation Prerequisites

JavaFX can only be used with the Java programming language. Thus, a JRE must be installed

beforehand (Java.com, 2020). A JRE and its necessary components can be acquired through

the installation of a JDK. As of April 2020, JavaFX 14 requires at least JDK version 11 to be

installed (OpenJFX.io, 2020).

For the purpose of this paper, the open-source JDK “Open JDK” will be considered. The

version used in this demonstration is the current most up to date OpenJDK version 14 and can

be downloaded on the official website here http://jdk.java.net/14/ (accessed: 18 May 2020).

Since JavaFX is distributed as a standalone module, it requires its additional separate

http://jdk.java.net/14/

14

installation. JavaFX 14 used in this demonstration can be downloaded via the Gluon webpage

here https://gluonhq.com/products/javafx/ (accessed: 18 May 2020).

After downloading both components, the following folders are included and must be unzipped:

jdk-14.0.1 and javafx-sdk-14. These folders should be moved to any suitable practical desktop

location, since the IDE will point to their folders and thus will depend on their location.

There are multiple environments in which JavaFX applications can be developed. An simple

and user-friendly environment is through an IDE. As already described in the beginning of the

section, this demonstration will be focusing on the development with JavaFX through the

IntelliJ IDEA Community Edition version 2020.1 IDE. IntelliJ IDEA can be downloaded from the

official homepage here https://www.jetbrains.com/idea/ (accessed: 18 May 2020).

After the successful installation of IntelliJ IDEA, it must be configured as described and shown

in the following steps:

1. Open IntelliJ IDEA

2. Create a JavaFX project and provide a name for the project

Figure 6 IntelliJ IDEA Home (JetBrains, 2020)

3. Set the project JDK: go to File>Project Structure>Project and under “Project SDK” click

add SDK>JDK… and browse for the downloaded JDK folder jdk-14.0.1 (or any

preferred other JDK version that has been downloaded). This links the desired JDK to

the current project. Set the “Project language level” to “SDK default”. Click “Apply” and

close the dialog.

https://gluonhq.com/products/javafx/
https://www.jetbrains.com/idea/

15

Figure 7 IntelliJ set project SDK (JetBrains, 2020)

4. Add a project library: go to File>Project Structure>Libraries and by clicking “+” browse

for the …\lib folder of the JavaFX 14 SDK javafx-sdk-14. This links the JavaFX library

to the project. Click “Apply” and close the dialog.

Figure 8 IntelliJ set library SDK (JetBrains, 2020)

16

5. Add VM options: go to Run>Edit Configurations and paste in these VM options:

--module-path %PATH_TO_FX%

--add-modules javafx.controls,javafx.fxml

Replace %PATH_TO_FX% by the full location path of the …\lib folder of the JavaFX

SDK javafx-sdk-14. Click “Apply” and close the dialog.

Figure 9 IntelliJ set VM options (JetBrains, 2020)

The project contains a sample JavaFX file which can be executed with Run>Run. Then the

sample.fxml Hello World window as in figure 10 should appear.

Figure 10 JavaFX sample.fxml window (JetBrains, 2020)

17

3.2. The JavaFX Architecture

One of the core features of the JavaFX underlying architecture is its focus on scene graph

structures for the administration and logical representation of individual components in the

GUI. A scene graph is a graphical visualization in a hierarchical tree structure where its nodes

represent all visual elements of the application’s user interface. Scene graphs are a data

structure often used in vector-based graphics editing and modern computer games. For

example, a game scene could contain a knight and a horse, whereas the knight could be

considered as an extension to the horse. Thus, the scene graph would consist of a horse node

with a knight node attached to it (Wikipedia, 2020).

Figure 11 Scene Graph Representation (FXdocs.Github, 2019)

The above figure shows a simple example of such a tree structure. The stage is at the top of

the architecture and is the JavaFX representation of the native OS window. A scene is attached

to the stage node, which is the initial container for the JavaFX scene graph. The elements of

the JavaFX scene graph are then represented as nodes (FXdocs.Github, 2019). Each node in

the JavaFX scene graph has its own ID, style class and bounding volume. Except for the root

node, every other node has a parent and zero or more child nodes (Oracle, 2014). Branch and

leaf nodes are differentiated as such that leaf nodes don’t have and child nodes.

A principle that applies to scene graphs is that the properties of a parent node are shared with

the child node. The effect of this principle can be seen when applying a transformation or an

event to a parent node, which will then automatically also be applied to its children

(FXdocs.Github, 2019). Nodes are mostly 2- or 3D shapes, images, media, embedded web

browsers, text, UI controls like f. e. buttons, charts, etc. Effects are objects which are able to

change the appearance of scene graph nodes as f. e. shadows, blurs or color adjustments.

18

States transform the visual state of contents f. e. by changing the positioning and orientation

of nodes or also by applying visual effects (Oracle, 2014).

3.3. Scene Builder

A powerful tool which results from the scene graph framework of JavaFX is Scene Builder. It

was originally distributed by Oracle, which stopped its distribution with the release of a Java 8

update. Nevertheless, it has remained available under the OpenJFX project and is now

distributed and updated by Gluon (Schulz, 2015).

Scene Builder allows the user to easily design a JavaFX GUI through a simple drag and drop

interface. This allows a quick creation and design of user interfaces without the need of source

code writing. The underlying scene graph structure is then automatically generated into an

.fxml file while the GUI is built and modified. Additionally, the user can directly visualize the

future GUI and its layout without the need of code compiling beforehand, which is a very time

saving feature. The Scene Builder software displays the future GUI in its standard look and

feel. This can be adapted simply by combining with a .css style defining file (Oracle, 2011).

Since IntelliJ IDEA also supports the configuration and implementation of Scene Builder, the

next steps will demonstrate the prerequisites for its first usage. The same software, application

and OS versions are applied as described in chapter 3.1. For the installation of the JDK,

JavaFX and IntelliJ IDEA, please refer to chapter 3.1.

Scene Builder must first be installed. It is distributed by Gluon and can be downloaded here

https://gluonhq.com/products/scene-builder/ (accessed: 18 May 2020). After the download and

successful installation, the Scene Builder software must be linked to the IntelliJ IDE. This can

be done through the following steps:

1. In IntelliJ IDEA go to File>Settings

2. Select “Languages and Frameworks” and select “JavaFX”

3. Browse for the installation location of the SceneBuilder.exe file and click “Ok”

4. Click “Apply” for saving the changes and close the dialog box

https://gluonhq.com/products/scene-builder/

19

Figure 12 Changing the Scene Builder Location in IntelliJ IDEA (JavaMonkey, 2019)

After creating a new or opening an existing JavaFX project in IntelliJ IDEA, one can start using

Scene Builder by right-clicking on any .fxml file and selecting “Open in Scene Builder”.

Figure 13 Open .fxml Filr in Scene Builder through IntelliJ IDEA (JavaMonkey, 2019)

After opening the .fxml file in Scene Builder, the controls are mostly self-explaining, due to their

very user-friendly interface. The next steps will demonstrate how a button can be added and

some text can be changed when the button is clicked.

On the bottom of the Scene Builder page, there are two tabs “Text” and “Scene Builder”. The

“Text” tab is where the .fxml code is displayed as text, and “Scene Builder” displays it in a user-

friendly interface. Click on the “Scene Builder” tab to start the creation of the GUI. As shown in

20

figure 14, the size of the window can be changed through the “AnchorPane” Layout tab on the

right side.

Figure 14 Scene Builder: Change Window Size (Shehanka, 2018)

As shown in figure 15, on the left pane one can select “Components” f. e. a button which can

be placed within the window and adjusted as needed.

Figure 15 Scene Builder: Add and Adjust Buttons (Shehanka, 2018)

21

On the right pane, the text displayed on the button and its font, size, color and alignment can

be changed. On the left-side, add a “Text” component, place it onto the window and type a “0”

(or any other text).

Figure 16 Scene Builder: Add and Adjust Text (Shehanka, 2018)

On the right-side, open the “Code: Text” panel and set the variable name (fx:id) to Text

Component and then to “txtOutput”.

Now switch to the “Text” tab on the bottom. As shown in figure 16, under the public

“IncrementalUIController” class, the text component has to be declared. This can be done

through adding the following variable and annotating with @FXML and “private Text

txtOutput;”.

Figure 17 Scene Builder: Add a JavaFX Component (Shehanka, 2018)

Furthermore, a function must be written to define what happens when a user clicks on the

button. This is done through the following lines of code, shown in figure 17. A function

“incrementValue” is defined which converts the text “0” to an integer type value and adds +1

to it. The values will then be reconverted back to a string type and displayed instead of the

previous text. It is important to always add @FXML to the coding, so Scene Builder can retrieve

its components.

22

Figure 18 Scene Builder: Add Onclick Event Function (Shehanka, 2018)

Switch back to the “Scene Builder” tab. The last step is to link the onclick event function to the

button. Select the button and on the right pane, open the “Code: Button” tab. In the “On Action”

drop down menu, choose “incrementValue”, since this is the name of the previously created

function.

To run the .fxml file go to the “Main.java” and change the FXMLLoader value to

IcrementUI.fxml. Then click on the run icon on the top in the toolbar tab. The previously

created window should pop up and each time the button is clicked, it should increase its

displayed value to +1.

23

4. Developing with JavaFX

4.1. For Desktops with Windows

Development with JavaFX on Windows can be done through several different ways and with

different IDEs. Independent of the IDE, the prerequisite for developing with JavaFX is the

installation of a JDK and the additional installation of JavaFX itself (see chapter 3.1. for the

detailed step by step installation description).

Various IDEs support the development of JavaFX applications for which the following are listed

on the OpenJFX webpage:

1. IntelliJ IDEA

2. NetBeans

3. Eclipse

For details on the installation of JavaFX with IntelliJ IDEA please refer to chapter 3.1. For

installation steps of the other IDEs and alternatives, please refer to the official OpenJFX

documentation https://openjfx.io/openjfx-docs (accessed: 18 May 2020).

4.2. For Desktops with Other OS (MacOS, Linux, etc.)

As of May 2020, the JDK version 14 is officially supported for Windows, MacOS and Linux.

This also applies to JavaFX version 14. The same installation prerequisites apply as for

Windows desktops and the steps listed in chapter 3.1. should also be followed by Mac or Linux

users.

For more detailed installation steps of the required components, IDEs and other alternatives

for MacOS and Linux, please refer to the official OpenJFX documentation

https://openjfx.io/openjfx-docs (accessed: 18 May 2020).

4.3. For Mobile Devices

For development o of applications for mobile devices, Sun Microsystems first released JavaFX

Mobile as part of JavaFX 1.1 in February 2009 (Wikpedia.org, 2020). With the release, Sun

Microsystems provided a unified model for the development of RIAs for even more different

platforms while using only one language and one set of APIs (Burnette, 2009). Mobile devices

include mobile phones, smartphones and tablets running on various operating systems

including Android, iOS and Windows. Shortly after the first release, Sun Microsystems

partnered with different vendors including Sony Ericsson and LG Electronics, carriers like

https://openjfx.io/openjfx-docs
https://openjfx.io/openjfx-docs

24

Orange and Sprint, and with various independent software vendors (ISV). Sony Ericsson’s

former executive vice president and chief creation officer Rikko Sakaguchi stated:

“We see JavaFX as a natural fit to our mobile software platform strategy to enable

developers […] to create superior, innovative, expressive mobile applications and

services. Sony Ericsson expects that JavaFX will have a great impact on the mobile

content ecosystem and plan to bring JavaFX to a significant part of our product

portfolio." (Taft, 2009)

Oracle dropped its official support for JavaFX Mobile with the release of JavaFX version 2.0 in

October 2011 (Wikpedia.org, 2020). Since the separation of JavaFX from the JDK, starting

with JavaFX 11, the JavaFX Mobile project has been to date continued by Gluon under the

name Gluon Mobile. Gluon Mobile supports the development of UI for both Android and iOS

devices. The written code can be rolled out on both operating systems without the need of

recoding (Gluon, 2020). Gluon Mobile is offered as a plugin for various IDEs. In the following

section, the installation and first steps for development of JavaFX on mobile devices with Gluon

Mobile are explained briefly. The same software, application and OS versions are applied as

described in chapter 3.1. For the installation of the JDK, JavaFX and IntelliJ IDEA, please refer

to chapter 3.1. Gluon Mobile plugin version 2.7.0 is used in the following demonstration.

Gluon Mobile can be downloaded either as a free version or on a paid subscription basis

(Gluon, 2020). For this demonstration, the steps are described using the free version. The

Gluon Mobile plugin can be directly downloaded within IntelliJ IDEA, or separately downloaded

via this link https://plugins.jetbrains.com/plugin/7864-gluon-plugin (accessed: 18 May 2020).

The steps listed below must be followed to download the plugin directly within IntelliJ IDEA IDE

(Gluon, 2018):

1. In IntelliJ IDEA, click File>Settings

2. On the left, select “Plugins”

3. On the top, choose the “Marketplace” tab

4. Search for “Gluon Plugin” and click “Install”

5. You may need to restart IntelliJ IDEA

After successfully installing the Gluon Mobile plugin, a Gluon project can be created. The

following steps describe how a sample Gluon project can be started:

1. In IntelliJ, click File>New>Project

2. On the left, select “Gluon”

https://plugins.jetbrains.com/plugin/7864-gluon-plugin

25

Figure 19 IntelliJ: create new Gluon Mobile Project (JetBrains, 2020)

3. First-time users will be prompted to register with Gluon by entering their email address.

A license key can also be entered in case the paid version of Gluon Mobile is preferred.

4. On the next window, the package name and main class name can be chosen. These

will be entered by default by Gluon. It also lets the user select the platforms for which

the app is intended to be developed for.

Figure 20 IntelliJ: chose Platforms for Gluon Mobile Project

5. Choose a valid installation of a JDK

6. Choose a name and a location for the project and click “Finish”.

26

IntelliJ IDEA will now prompt for importing a Gradle project. Gradle is a tool for automating

builds and is most often implemented with languages such as Java, Groovy or Scala. Gradle’s

configuration allows automated running of compilers, tests or the creation of code

documentation (MacMurray, 2018).

Figure 21 IntelliJ: Gluon Mobile Project Import Gradle Module

Under “Use Gradle from” choose “ ’gradle-wrapper.properties’ file”. Under “Gradle JVM” select

the desired JDK. Click “Ok” and the new project is imported and opened afterwards. Now a

JavaFX application can be easily developed for mobile devices.

4.4. For Raspberry Pi

Java applications can also be run on embedded mobile devices such as Raspberry Pi single-

board computers. Raspbian OS natively includes Java and since version 2019-06-20 it

includes OpenJDK version 11 (Raspbian, 2020). This allows Raspbian to run Java

applications, but since JavaFX is not included in the JDK, it must be installed separately. One

easy way to install JavaFX is through the Bellsoft LibericaJDK which already includes JavaFX

and has a dedicated JDK release for Raspberry Pi devices. The supported devices listed by

Bellsoft include Raspberry Pi Model 2 and 3 with ARM v7, ARMv8 or Intel Atom processors

(Bellsoft, 2020).

The following steps demonstrate how the LibericaJDK can be installed on a Raspberry Pi

(Webtechie, 2020). As of May 2020, the most actual LibericaJDK version is 13.0.2+9 and will

be installed in the following steps.

1. On the Raspberry Pi, download LibericaJDK with the following commands:

$ cd /home/pi

$ wget https://download.bell-sw.com/java/13.0.2+9/bellsoft-

jdk13.0.2+9-linux-arm32-vfp-hflt.deb

27

$ sudo apt-get install ./bellsoft-jdk13.0.2+9-linux-arm32-vfp-

hflt.deb

$ sudo update-alternatives --config javac

$ sudo update-alternatives --config java

2. Check if the installation was successful by running the following command:

$ java –version

If the installation was completed correctly, the output should look as following:

openjdk version "13-BellSoft" 2019-09-17

OpenJDK Runtime Environment (build 13-BellSoft+33)

OpenJDK Server VM (build 13-BellSoft+33, mixed mode)

For the installation of any alternative LibericaJDK version, please replace the links from the

commands in step 1 marked in bold with any official download link from the Bellsoft website.

After successful installation, the Raspberry Pi now supports running JavaFX applications.

28

5. Getting Started with Development

The following chapters will focus on hands-on development with JavaFX. The first part will

demonstrate and go through the steps for the implementation of a classic “Hello Word”

application. The second chapter will provide a collection of code snippets which are intended

to be used as references when developing with JavaFX. These demonstrations, the same

software, application and OS versions are applied as described in chapter 3.1. For the

installation of the JDK, JavaFX and IntelliJ IDEA, please refer to chapter 3.1.

5.1. First “Hello World” JavaFX Program

This demonstration starts after a JavaFX project has been successfully created in IntelliJ IDEA.

Please refer to chapter 3.1. for details on how such a project must be set up.

After the initialization of a new JavaFX project and configuration of the environment settings,

the project should contain three sample files:

• Main.java

• Controller.java

• sample.fxml

The sample.fmxl file already contains the coding for a very basic JavaFX window which will be

adapted to a more sophisticated version in the next steps (JetBrains, 2020):

1. Changing the default controller name: in the Controller.java file, highlight the

Controller class name and hold Shift+F6. This opens a new Refractor Rename

window, which lets the user rename a variable and will then automatically rename it

on each project file it appears in. Rename the Controller to HelloWorldController

and then click “Refractor”.

Figure 22 Refractor Controller Name (JetBrains, 2020)

29

2. Add a button: if the button is clicked, a “Hello Word!” message should appear in the

application. In the sample.fxml file add the following code within the <GridPane> tag:

<Button text="Say 'Hello World'" onAction="#sayHelloWorld"/>

<Label GridPane.rowIndex="1" fx:id="helloWorld"/>

In the first line, a button is defined which holds the text “Say Hello Word” and which

performs the action “sayHelloWorld” when it is clicked. The “sayHelloWorld” action will

be defined in the next step.

Figure 23 Add "Say Hello Word" Button (JetBrains, 2020)

3. Create the message field: in sample.fxml highlight helloWorld after fx:id in the label

tag and hold Alt+Enter. Select “Create Field ‘helloWorld’”. Now IntelliJ IDEA will

switch to the HelloWorldController.java file where a new import statement import

javafx.scene.control.Label; will have been generated. Additionally, a

helloWorld label field will have been declared. Press Enter to apply and exit the

refactoring mode.

Figure 24 Create 'HelloWorld' Field (JetBrains, 2020)

4. Create “sayHelloWorld” method: in sample.fxml highlight sayHelloWorld after

onAction in the button tag. Hold Alt+Enter and select “Create Method 'void

sayHelloWorld(ActionEvent)'”. IntellIJ IDEA now automatically adds the declared

method in the HelloWordCorntroller.java file.

30

Figure 25 Create „sayHelloWorld“ Action Event Method (JetBrains, 2020)

5. Set text for the label: in the HelloWorldController.java file, paste the following code

line after the sayHelloWorld method:

helloWorld.setText("Hello World!");

Figure 26 Set Text for Hello World Label (JetBrains, 2020)

The basic “Hello World” application is now ready to be executed: click Run>Run and the

window as shown in figure 27 should appear. When the button is clicked, the “Hello Word!”

text should appear below it.

Figure 27 Basic Hello World Window with Button (JetBrains, 2020)

The next steps will demonstrate how a CSS styling can be applied to the interface of the

window.

31

1. Reference to CSS-Stylesheet: in the sample.fxml file add the following code after

fx:controller in the GridPane tag:

stylesheets="/sample/sample.css"

Figure 28 Add CSS-Stylesheet Reference (JetBrains, 2020)

2. In sample.fxml, highlight sample.css and hold Alt+Enter. Select “Create File

sample.css” and a new .css file will be opened in a new tab.

3. In the sample.css file add the following lines of code:

.root {

-fx-background-color: bisque;

}

.label {

-fx-font-size: 20;

}

The final “Hello World” application is now ready to be executed: click Run>Run and the

window as shown in figure 29 should appear. The background color is changed depending

on the defined background color in the sample.css file. Additionally, the font size has been

set to 20.

Figure 29 Hello World Window with Button and CSS Style (JetBrains, 2020)

32

5.2. Various Development Examples

The following section will highlight some code-snippets for the implementation of a basic

user-interface as shown in figure 30.

Figure 30 Example of Basic JavaFX Registration Form (JetBrains, 2020)

5.2.1. General-Purpose Text Fields

A general-purpose text field can be used for collecting any type of user input. In figure 30 this

is represented by the “Full Name” and the “Email ID” text field. The following code snippet

can be applied in an .fxml file for the creation of such a text field:

The Label tag is used for defining the text field and the displayed text can be adjusted with

the text parameter. The GridPane.columnIndex and .rowIndex parameters defines the

location of the displayed text.

The TextField tag is used for adding the user input field. prefHeight defines its height

and GridPane.columnIndex and .rowIndex its location.

5.2.2. Password Text Fields

A password text field has a unique characteristic which hides the input characters when

typed in.

<Label text="Full Name : "

GridPane.columnIndex="0" GridPane.rowIndex="1" >

</Label>

<TextField prefHeight="40"

 GridPane.columnIndex="1" GridPane.rowIndex="1"/>

33

Figure 31 JavaFX Password Text Field (JetBrains, 2020)

This is one of the aspects which make it a suitable field for password input, since it provides

security for the user entering it. The following code snippet can be used in an .fxml file for the

creation of a password text field.

The password text fields differ from general-purpose text fields in such that the

PasswordField tag must be used.

5.2.3. Buttons

A button in JavaFX can be added and its appearance adjusted in an .fxml file with the

following lines of code:

The Button tag is used for defining the button and the text displayed on the button can be

adjusted with the text parameter. prefWidth and prefHeight define the size of the button.

GridPane.columnSpan and .rowSpan define the location of the button and .halignment its

alignment. The onAction parameter can be implemented for defining what event should be

triggered as soon as the button is clicked.

<Label text="Password : "

GridPane.columnIndex="0" GridPane.rowIndex="3" >

</Label>

<PasswordField prefHeight="40"

 GridPane.columnIndex="1" GridPane.rowIndex="3"/>

<Button text="Submit"

prefWidth="100" prefHeight="40"

GridPane.columnIndex="0" GridPane.rowIndex="4"

GridPane.columnSpan="2" GridPane.rowSpan="1"

GridPane.halignment="CENTER"

onAction="#ButtonClickEvent">

</Button>

34

5.2.4. Application Window Icon

The icon of the application window can be adjusted in the main.java file with the following line

of code. This will change the icon at the top of the window and the icon for the app displayed

in the task bar.

Figure 32 Custom Application Window Icon in JavaFX (JetBrains, 2020)

The file icon.png must be placed in the same directory as the main.java file. Alternatively, the

file location address can be inserted instead.

Stage.getIcons().add(new Image(getClass().getResourceAsStream("icon.png")));

35

Summary and Conclusion

As has been highlighted in the last chapters, JavaFX is a framework based on the Java

programming language which lets users develop rich internet applications and sophisticated

graphical user-interfaces. JavaFX applications can be easily and fast implemented on all major

popular platforms, operating systems and device available on the market, including desktops

with Windows, MacOS and Linux, mobile devices running on Android, IOS or Windows and

even embedded devices such as Raspberry Pi. (Wikpedia.org, 2020). It requires little to no

programming experience thanks to the Scene Builder integration, which enables users to

create graphical user-interfaces through a simple and user-friendly visual drag-and-drop tool

(Gluon, 2020). Once the JavaFX code is written, it can easily be deployed on various platforms,

without the need of code adaptation to individual platform-dependent characteristics. To

conclude, JavaFX is a great starting point for users that want to get familiar in app-interface

development with Java.

36

Bibliography

Baeldung, 2019. Differences Between Oracle JDK and OpenJDK. [Online]
Available at: https://www.baeldung.com/oracle-jdk-vs-openjdk
[Accessed 10 May 2020].

Bellsoft, 2020. Liberica JDK version 13.0.2 for Embedded. [Online]
Available at: https://bell-sw.com/pages/java-13.0.2-for-Embedded/
[Accessed 18 May 2020].

Burnette, E., 2009. Java gets a mobile makeover with JavaFX Mobile. [Online]
Available at: https://www.zdnet.com/article/java-gets-a-mobile-makeover-with-javafx-mobile/
[Accessed 10 May 2020].

Educba, 2020. Java Swing vs JavaFX. [Online]
Available at: https://www.educba.com/java-swing-vs-java-fx/
[Accessed 18 May 2020].

FXdocs.Github, 2019. FXdocs Github. [Online]
Available at: https://fxdocs.github.io/docs/index.html
[Accessed 29 April 2020].

Gluon, 2018. Gluon Mobile Documentation. [Online]
Available at: https://docs.gluonhq.com/charm/5.0.1/#intellij-plugin
[Accessed 11 May 2020].

Gluon, 2020. Buy Gluon Mobile. [Online]
Available at: https://gluonhq.com/products/mobile/buy/
[Accessed 11 May 2020].

Gluon, 2020. Gluon Mobile. [Online]
Available at: https://gluonhq.com/products/mobile/
[Accessed 11 May 2020].

Java.com, 2020. General Information on JavaFX. [Online]
Available at: https://www.java.com/en/download/faq/javafx.xml
[Accessed 15 April 2020].

Java, 2019. Important Oracle Java License Update. [Online]
Available at: https://java.com/en/download/release_notice.jsp
[Accessed 10 May 2020].

JavaMonkey, 2019. Noble Code Monkeys. [Online]
Available at: https://noblecodemonkeys.com/javafx-scenebuilder-with-intellij-and-netbeans/
[Accessed 29 April 2020].

JavaTpoint.com, 2020. Java AWT Tutorial. [Online]
Available at: https://www.javatpoint.com/java-awt
[Accessed 30 March 2020].

JavaTpoint, 2020. Java Swing Tutorial. [Online]
Available at: https://www.javatpoint.com/java-swing
[Accessed 2020 May 2020].

JetBrains, 2020. Develop a basic JavaFX application. [Online]
Available at: https://www.jetbrains.com/help/idea/developing-a-javafx-application-

37

examples.html
[Accessed 18 May 2020].

JetBrains, 2020. IntelliJ IDEA Version 2020.1, s.l.: JetBrains s.r.o..

Krill, P., 2018. JavaFX will be removed from the Java JDK. [Online]
Available at: https://www.infoworld.com/article/3261066/javafx-will-be-removed-from-the-
java-jdk.html
[Accessed 11 May 2020].

Lau, K., 2009. Javaworld.com. [Online]
Available at: https://www.javaworld.com/article/2077998/javafx-mobile-released.html
[Accessed 4 April 2020].

MacMurray, A., 2018. A beginners guide to Gradle. [Online]
Available at: https://medium.com/@andrewMacmurray/a-beginners-guide-to-gradle-
26212ddcafa8
[Accessed 11 May 2020].

OpenJFX.io, 2020. Getting Started with JavaFX. [Online]
Available at: https://openjfx.io/openjfx-docs/
[Accessed 15 April 2020].

Oracle, 2011. JavaFX Scene Builder. [Online]
Available at: https://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-
info-2157684.html
[Accessed 11 May 2020].

Oracle, 2014. Docs.Oracle. [Online]
Available at: https://docs.oracle.com/javase/8/javafx/JFXST.pdf
[Accessed 29 April 2020].

Oracle, 2020. Java SE Downloads. [Online]
Available at: https://www.oracle.com/java/technologies/javase-downloads.html
[Accessed 10 May 2020].

Oracle, 2020. JavaFX FAQ. [Online]
Available at: https://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#6
[Accessed 4 April 2020].

Raspbian, 2020. Release Notes. [Online]
Available at: http://downloads.raspberrypi.org/raspbian/release_notes.txt
[Accessed 18 May 2020].

Schulz, B., 2015. Bye Bye JavaFX Scene Builder, Welcome Gluon Scene Builder 8.0.0.
[Online]
Available at: https://dzone.com/articles/bye-bye-javafx-scene-builder
[Accessed 11 May 2020].

Shehanka, C., 2018. JavaFX step by step Part 2— UI design with Scene Builder. [Online]
Available at: https://blog.usejournal.com/javafx-step-by-step-part-2-ui-design-with-scene-
builder-4dc8473b3c2c
[Accessed 29 April 2020].

Smith, D., 2018. Oracle Blog. [Online]
Available at: https://blogs.oracle.com/java-platform-group/the-future-of-javafx-and-other-java-

38

client-roadmap-updates
[Accessed 4 April 2020].

Taft, D. K., 2009. Sun Launches JavaFX Mobile. [Online]
Available at: https://www.eweek.com/development/sun-launches-javafx-mobile
[Accessed 10 May 2020].

Taman, M., 2015. JavaFX Essentials. Birmingham, UK.: Packt Publishing Ltd.

Tyson, M., 2020. Javaworld.com. [Online]
Available at: https://www.javaworld.com/article/3296360/what-is-the-jdk-introduction-to-the-
java-development-kit.html
[Accessed 4 April 2020].

Vermeer, B., 2020. JVM Ecosystem Report 2020. [Online]
Available at: https://snyk.io/wp-content/uploads/jvm_2020.pdf
[Accessed 11 May 2020].

Vos, J., 2020. Release Notes for JavaFX 14 ; Github.com. [Online]
Available at: https://github.com/openjdk/jfx/blob/jfx14/doc-files/release-notes-14.md
[Accessed 4 April 2020].

Webtechie, 2020. Installing Java and JavaFX on the Raspberry Pi. [Online]
Available at: https://webtechie.be/post/2020-04-08-installing-java-and-javafx-on-raspberry-pi/
[Accessed 18 May 2020].

Wikipedia.org, 2020. Abstract Window Toolkit. [Online]
Available at:
https://en.wikipedia.org/w/index.php?title=Abstract_Window_Toolkit&oldid=931019423
[Accessed 30 March 2020].

Wikipedia.org, 2020. Swing (Java). [Online]
Available at: https://de.wikipedia.org/w/index.php?title=Swing_(Java)&oldid=196092289
[Accessed 30 March 2020].

Wikipedia, 2020. Java (programming language). [Online]
Available at:
https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=956349384
[Accessed 18 May 2020].

Wikipedia, 2020. Raspbian. [Online]
Available at: https://en.wikipedia.org/w/index.php?title=Raspbian&oldid=951519874
[Accessed 18 May 2020].

Wikipedia, 2020. Scene graph. [Online]
Available at: https://en.wikipedia.org/w/index.php?title=Scene_graph&oldid=953884868
[Accessed 18 May 2020].

Wikpedia.org, 2020. JavaFX. [Online]
Available at: https://en.wikipedia.org/w/index.php?title=JavaFX&oldid=947700994
[Accessed 30 March 2020].

Yap, C., 2003. Java Swing Tutorial. New York University. [Online]
Available at: https://cs.nyu.edu/~yap/classes/visual/03s/lect/l7/
[Accessed 30 March 2020].

39

List of Figures

Figure 1 AWT basic window code (JavaTpoint.com, 2020) ... 6
Figure 2 AWT basic window in Microsoft Windows XP (JavaTpoint.com, 2020) 6
Figure 3 Swift basic widgets with the standard “Ocean Look and Feel” 7
Figure 4 Snyk JVM Ecosystem Report 2020: JavaSDK Market ... 9
Figure 5 JVM Ecosystem Report 2020: Main IDE ...13
Figure 6 IntelliJ IDEA Home (JetBrains, 2020) ...14
Figure 7 IntelliJ set project SDK (JetBrains, 2020) ..15
Figure 8 IntelliJ set library SDK (JetBrains, 2020) ...15
Figure 9 IntelliJ set VM options (JetBrains, 2020) ...16
Figure 10 JavaFX sample.fxml window (JetBrains, 2020) ...16
Figure 11 Scene Graph Representation (FXdocs.Github, 2019) ...17
Figure 12 Changing the Scene Builder Location in IntelliJ IDEA (JavaMonkey, 2019)19
Figure 13 Open .fxml Filr in Scene Builder through IntelliJ IDEA (JavaMonkey, 2019)19
Figure 14 Scene Builder: Change Window Size (Shehanka, 2018)20
Figure 15 Scene Builder: Add and Adjust Buttons (Shehanka, 2018)20
Figure 16 Scene Builder: Add and Adjust Text (Shehanka, 2018) ..21
Figure 17 Scene Builder: Add a JavaFX Component (Shehanka, 2018)21
Figure 18 Scene Builder: Add Onclick Event Function (Shehanka, 2018)22
Figure 19 IntelliJ: create new Gluon Mobile Project (JetBrains, 2020)25
Figure 20 IntelliJ: chose Platforms for Gluon Mobile Project ...25
Figure 21 IntelliJ: Gluon Mobile Project Import Gradle Module ...26
Figure 22 Refractor Controller Name (JetBrains, 2020) ..28
Figure 23 Add "Say Hello Word" Button (JetBrains, 2020) ..29
Figure 24 Create 'HelloWorld' Field (JetBrains, 2020) ..29
Figure 25 Create „sayHelloWorld“ Action Event Method (JetBrains, 2020)30
Figure 26 Set Text for Hello World Label (JetBrains, 2020) ..30
Figure 27 Basic Hello World Window with Button (JetBrains, 2020)30
Figure 28 Add CSS-Stylesheet Reference (JetBrains, 2020) ..31
Figure 29 Hello World Window with Button and CSS Style (JetBrains, 2020)31
Figure 30 Example of Basic JavaFX Registration Form (JetBrains, 2020)32
Figure 31 JavaFX Password Text Field (JetBrains, 2020) ..33
Figure 32 Custom Application Window Icon in JavaFX (JetBrains, 2020)34

https://d.docs.live.net/39209352dfbfe7f7/01%20University/03%20Betriebswirtschaft/SBWL_BIS/05%20-%20BIS%20Seminar/Landman_Seminararbeit_JavaFX_h1551237.docx#_Toc42102339

