

Seminar Paper

Security Concerns in Proprietary and

Open Source Software

by

Fabiola Welzenbach, h1552712

handed in on the 03.06.2020

Supervisor

Univ. Prof. Mag. Dr. Rony G. Flatscher

LV Seminar aus BIS, 4167

SS2020

June 2020 2

Erklärung:

Ich versichere:

dass ich die Seminararbeit selbstständig verfasst, andere als die angegebenen

Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe.

dass ich dieses Seminararbeitsthema bisher weder im In- noch Ausland (einer

Beurteilerin/ einem Beurteiler) in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

dass diese Arbeit mit der vom Begutachter beurteilten Arbeit übereinstimmt.

Datum 03.06.2020 Fabiola Welzenbach

June 2020 3

Abstract

In times of digital transformation and increasing amounts of cyber-attacks, seeking

control over confidential information for companies is on top priority. Thus, this work

highlights different aspects of considering open source and proprietary software of

security concerns. The main research question is whether open source or proprietary

software is more secure. To answer this question, a basic guideline of open source

and proprietary software gives a first understanding of software in general. Then,

advantages and disadvantages have been evaluated of both types and subsequently,

typical attacks, real case attacks and strategies to overcome security concerns are

involved. The goal of this paper is to help companies to understand the down- and

upsides of both software types according to security concerns, to then decide, which

software will fit to their IT strategy.

June 2020 4

Table of Contents

1 Introduction ... 6

1.1 Definition .. 7

1.1.1 Definition of Software .. 7

1.1.2 Definition of Proprietary Software .. 9

1.1.3 Definition of Open Source Software .. 9

2 Licensing .. 12

2.1 Licencing – Open Source Software .. 12

2.2 Licensing – Proprietary Software.. 14

3 Advantages and Disadvantages .. 15

3.1 Advantages and Disadvantages of Open Source Software 15

3.2 Advantages and Disadvantages of Proprietary Software 18

4 Security Concerns of Software .. 20

4.1 Security Concerns – Open Source Software .. 21

4.2 Security Concerns - WordPress ... 26

4.3 Security Concerns – Proprietary Software ... 26

4.4 Security Concerns – Volkswagen AG ... 28

4.5 Attacks in Proprietary and Open Source Software 29

5 Software Strategies ... 31

5.1 Open Source Software Strategies .. 32

5.2 Proprietary Software Strategies ... 33

6 Microsoft and Open Source Software .. 34

6.1 Latest Contribution of Microsoft to Open Source Software 34

6.2 Microsoft – Open Source Security .. 35

7 Conclusions ... 37

8 Bibliography .. 38

June 2020 5

List of abbreviations

FSF Free Software Foundation

OSI Open Source Initiative

OSS Open Source Software

VW Volkswagen AG

CMS Content Management System

NVD National Vulnerability Database

SCAP Security Content Automation Protocol

CVE Common Vulnerabilities and Exposures

SCA Software Composition Analysis

MSRC Microsoft Security Response Center

June 2020 6

1 Introduction

In the last years the term “digitalization” has become a major concern for all companies

around the world. With digitalization the world is changing faster than ever before. New

products have been developed, small businesses start becoming challenging

competitors and new business models were established. To stay competitive

companies, have to adjust their systems, their value chains and their whole business

strategy. But after the process of digital transformation has been successfully

implemented, it entails great advantages. Due to Industry 4.0, robots can now perform

difficult tasks that humans could not do, and sensors can be used to provide accurate

data and thus response times can be shortened. Digitalization plays a great impact

and only these two examples out of many more, show how valuable digitalization has

become. But as digitalization cannot only be used in a positive way, it gives attackers

an increasing opportunity to destroy and steal valuable and confidential data from

companies and their customers. Due to the Corona Crisis this has become especially

intense as with everyone being in home office, attacks have become easier. This can

be explained as the network of companies is normally much more secure than it is at

the employees’ home. Overall, this shows that security is a major concern of today’s

businesses in regard to digitalization. To ensure security, businesses have built up

teams in their IT department that focus on security and to reduce the risk of such

attacks. These departments are of particular importance if the company is a major

enterprise and a failure would have far-reaching consequences. In the worst case, for

example, if there would be a successful attack on an airport, the entire air traffic would

be stopped, passengers would miss their connecting flight and the cost related to this

would be enormously high. Thus, security should be handled as an important asset in

a company. As these attacks are most likely done on software, this paper gives an

overview on security concerns of open source software (OSS) and proprietary

software. The overall question that runs like a red thread through the paper is, if

whether open source or proprietary software is more secure or not. To answer this

question, the first part of this paper gives a basic understanding of software in general

and open source and proprietary software. After that, the focus lies on the different

licenses, which also play an important role in terms of security. Subsequently, general

advantages and disadvantages of open source and proprietary software are analyzed.

June 2020 7

Based on this, security concerns are then specifically assessed and real examples

highlight the issues. After considering the issues that come along with open source

and proprietary software, security strategies to overcome security concerns are

mentioned. Furthermore, the change from the proprietary software giant Microsoft to

an open source software contributor has been analyzed and security suggestions for

Microsoft users are presented. Finally, the initial question of whether proprietary

software or open source software is more secure is answered and the results of the

work are briefly summarized

1.1 Definition

This chapter gives first a brief overview of the definition of software in general.

Subsequently, open source and proprietary software will be explained and at the end

of this chapter the focus lies on the different licensing types of both software types.

1.1.1 Definition of Software

To understand the concept of software it is first of importance to have a basic

understanding of hardware because software is built up on hardware. Basically, the

term hardware implicates all physical units, which built up a computer system. This

could be a screen, keyboard or a system unit. To be able to use the hardware, suitable

software is necessary. Thus, the programs available on computer systems are called

software. The executable code, which controls computer behavior and operations, can

be defined as software and is used to describe a broad range of applications,

programming languages and procedures. Software controls, integrate and manages

individual hardware components of a computer system, to enable users not having to

get into detail with low-level details of a computational system (Bouras, Kokkinos, &

Tseliou, 2012).

Overall, software cannot be seen as an inseparable whole. Because a complex

software system is made up of multiple interacting software components, formed by

several layers of components. Thereby components depend on other components

and/or contain further subcomponents themselves. Software components can be

categorized as infrastructure, industry, application and development components

June 2020 8

(Hansen, Mendling, & Neumann, 2015). A distinction is therefore made according to

the intended use:

• The system software is necessary to control the existing hardware. The central

component of the system software is known as the operating system, which has

multiple tasks. The main task is to control the computer, directs instructions and

data to the processor, organizes and manages internal and external memories and

connects devices. It is also the interface between the computer and the user. The

operating system evaluates the commands entered and the execution of these

instructions is analyzed. As the hardware of a computer system exists of one or

more processors, memory, network interfaces and other devices, it is of importance

to design programs that manage the complex interaction of these components and

use them in the right way (Wiedemann, Holey, & Wiedemann, 2007).

• Second, in general the infrastructure software provides the technical

infrastructure for other components, which usually offers the user only a small

added value when it’s on its own because it is essential for the function of the overall

system. Important to consider is that the infrastructure software makes the

development of application software much easier. Infrastructure components

include, database systems and graphical user interfaces (Hansen, Mendling, &

Neumann, 2015).

• The application software is used to enable the computer to be used for a wide

range of applications. The utilization of suitable application software allows the user

to design and edit texts, images or tables with the computer. Also, to manage data

stocks in databases or to access information on the Internet (Wiedemann, Holey,

& Wiedemann, 2007).

• Based on the operating system, the development software allows the

programming of almost every program. An important part of a development

software is the programming language. The development software is needed to

create system, application and development software (Hansen, Mendling, &

Neumann, 2015).

June 2020 9

Based on the overview about the definition of software and its components, this leads

to the understanding of the main differentiation of software – proprietary and open

source software.

1.1.2 Definition of Proprietary Software

The adjective “proprietary” comes from the Latin word proprietas “owner”. Meaning

“held in private ownership” (Online Etymology dictionary, n.d.). Based on this general

understanding of the term proprietary the following paragraph gives a short overview

about proprietary in connection with software. Proprietary software is software with

limitations on using and copying it, normally by a proprietor. To prevent modification or

copying software this can be achieved through technical or legal means. Legally,

through software licensing, patent law and copyright and technically through releasing

machine-readable binaries only and withholding the human-readable source code. The

term proprietary software describes software, which is not free or semi-free software

used by the Free Software Foundation (FSF). Primarily, proprietary software has an

owner, who has control over the software and its source code. According to proprietary

software the owner is of major importance, however to "free software" the user plays

a major role. Windows OS and Mac OS are the most well-known examples of

proprietary software (Sahoo & Sahoo, 2016).

1.1.3 Definition of Open Source Software

Most software programs downloaded or purchased are only available in the compiled

ready-to-run version. This means for developers; it is enormously difficult to change

the version and to have a deeper understanding on how the developer has developed

different parts of the software. However, many companies see this as a positive effect

as it avoids competing companies to copy their code and using it in a product. On the

other hand, by using open source it basically describes the opposite. Its source code

is open to everyone and adaption as well as modification is suggested. A goal of open

source software is that the application will be more useful, error-free and gives

everyone, who has knowledge in programming the opportunity to adjust the source

code. (Sahoo & Sahoo, 2016) In order to share open source software ten criteria by

the internationally accepted open source definition must be met. Therefore, only

licensed software under an Open Source Initiative (OSI) accepted open source license

June 2020 10

can be called open source software. The ten following criteria for distributing open

source software are as follows and can be found on https://opensource.org/osd:

1. Free Redistribution: The license shall not restrict any party from selling or

giving away the software as a component of an aggregate software distribution

containing programs from several different sources. The license shall not

require a royalty or other fee for such sale.

2. Source Code: The program must include source code and must allow

distribution in source code as well as compiled form. Where some form of a

product is not distributed with source code, there must be a well-publicized

means of obtaining the source code for no more than a reasonable reproduction

cost, preferably downloading via the Internet without charge. The source code

must be the preferred form in which a programmer would modify the program.

Deliberately obfuscated source code is not allowed. Intermediate forms such as

the output of a preprocessor or translator are not allowed.

3. Derived Works: The license must allow modifications and derived works, and

must allow them to be distributed under the same terms as the license of the

original software

4. Integrity of The Author's Source Code: The license may restrict source-code

from being distributed in modified form only if the license allows the distribution

of "patch files" with the source code for the purpose of modifying the program

at build time. The license must explicitly permit distribution of software built from

modified source code. The license may require derived works to carry a different

name or version number from the original software.

5. No Discrimination Against Persons or Groups: The license must not

discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor: The license must not restrict

anyone from making use of the program in a specific field of endeavor. For

example, it may not restrict the program from being used in a business, or from

being used for genetic research.

7. Distribution of License: The rights attached to the program must apply to all

to whom the program is redistributed without the need for execution of an

additional license by those parties.

https://opensource.org/osd

June 2020 11

8. License Must Not Be Specific to a Product: The rights attached to the

program must not depend on the program's being part of a particular software

distribution. If the program is extracted from that distribution and used or

distributed within the terms of the program's license, all parties to whom the

program is redistributed should have the same rights as those that are granted

in conjunction with the original software distribution.

9. License Must Not Restrict Other Software: The license must not place

restrictions on other software that is distributed along with the licensed software.

For example, the license must not insist that all other programs distributed on

the same medium must be open-source software.

10. License Must Be Technology-Neutral: No provision of the license may be

predicated on any individual technology or style of interface.

Considering all criteria together it can be seen that when using open source software,

it comes with restrictions. When talking about open source software many people use

the term free software. Even though these two terms are related, they have a slightly

different meaning. The definition of the concept of open source was developed by the

Open Source Initiative. Historically the term “open source” was invented at a strategy

meeting in 1998, in Palo Alto and was suggested by Christine Peterson. This

announcement took place right after the release of the Netscape source code, which

represented a great chance to promote open source development. Eric Raymond and

Michael Tiemann, who both attended at the strategy meeting in Palo Alto were later

the Presidents of OSI. Due to the support from key individuals like the founders of

Apache, Python and Linux the term “open source” was very well and quickly accepted.

The original purpose of OSI was to build an educational organization with the focus on

declaring and protecting the "open source" label.

On the other side, the term “free software” was invented by the Free Software

Foundation to protect and support free software, founded in 1985. Even though they

shared the same goal to support the distribution and development of free software, the

OSI had disagreements with how FSF promoted the free software. The OSI had the

opinion that free software was a functional rather than an ideological issue. But this

was not the only issue the OSI disagreed with. Another one was that the OSI was

concerned about the word “free”. Because “free” software can mean the software does

June 2020 12

not cost anything, but the source code is still not available. For example. Microsoft

Internet Explorer is free of charge, but you still cannot see the source code, even

though its “free”. Also, some software is labeled “free” but the source code is covered

by a license agreement and copyright with further restrictions (Why `Free Software' Is

Too Ambiguous, n.d.). These examples highlight the issue that free software is not

always “free”. On the other side, the term “open” was used to describe the "absence

of hardware vendor lock-in" in the computer industry back in the 1980s. Later the term

was defined by the OSI that “open” applies to the open software source code, which is

visible, accessible and free to change the code without paying additional fees. As both

terms are related to each other choosing between the two related terms “free” and

“open” can lead to confusion and is the reason why today some people use both or the

term "free and open source software" (FLOSS) (Open Source Initiative, n.d.). In this

paper the focus lies on open source software and free software is only sometimes

touched on.

2 Licensing

In this chapter the focus lies the different types of licensing of open source software

and proprietary software. The differences of each types will be explicitly highlighted

and examined.

2.1 Licencing – Open Source Software

Even though the original purpose of open source was to build up an educational

organization with an open source code that can be modified and shared without any

hurdles to overcome, the business in which open source software is now used has

changed in a different way.

As stated on Github.com over 50 million developers worldwide are currently registered

on GitHub. Overall, GitHub is the world’s largest open source community (Github, n.d.)

with also contributors from big tech companies. For example, the five most active

employees are contributors from Microsoft, Google, Red Hat, Intel and Facebook

(Brodsky, 2018). This large knowledge of the community combined with also skilled

June 2020 13

employees from big tech companies gives enough incentives to build up ideas for

businesses. Thus, new business models were established, and companies started to

copy the source code of well-known projects, made some changes and gave the

software a new name and offered this “new” software at the end to customers as

proprietary software. The most common companies, who used the open source

community to build their business on are most likely cloud providers (Honsel, 2020).

As this was not the idea of open source initially, open source activists started to make

use of licensing open source software to restrict business to grow from making use of

the open source community. Richard Stallman, the founder, of the Free Software

Foundation and one of the most popular licences (GPL) once said “My work on free

software is motivated by an idealistic goal: spreading freedom and cooperation. I want

to encourage free software to spread, replacing proprietary software that forbids

cooperation, and thus make our society better.” (Stallman, 2002). This statement and

the problem of making use in the wrong way of open source software emphasizes the

importance of licenses.

Open source licensing declares that software can only be used in commercial

applications under certain conditions and is a legally valid and binding contract

between the developer and the user. As long as developers use open source applied

to specific conditions defined in the license, developers that make components into

open source can use this software. Over 200 open source licenses exist and each

states the terms and conditions what users are allowed to do with the software

components. Based on the conditions and restrictions, two main categories such as

copyleft and permissive can be found. As copyleft is not the contrast of copyright, it is

first important to understand

the term copyright. The term

copyright refers to the law that

work is restricted to be shared

without the permission of the

copyright holder whereas the

copyleft license states that

user have the permission to

use, modify and share it.

However, the user has the
Figure 1: (WhiteSource, 2020)

http://www.gnu.org/philosophy/why-copyleft.html

June 2020 14

obligation to publish modified program code again under the same license, meaning

that programs under copyleft licenses may neither be combined with proprietary

software nor turned into such. In a nutshell, the user has to make the open source code

for other users open as well. In contrast, permissive open source license is related to

the copyleft open source license but has a major difference. Because similar to copyleft

it guarantees to use and modify the source code. However, the crucial difference lies

in the distribution of the source code, as the permissive license also allows to distribute

proprietary derivative works. Currently, as shown in Figure 1, the top three open source

licenses are MIT, Apache 2.0, General Public License version 3 (GPLv3), General

Public License version 2 (GPLv2) and BSD3 (WhiteSource, 2020). The most

widespread MIT permissive license was founded by the Massachusetts Institute of

Technology in 1988 with no obligation to disclose the code and is used by: Bitcoin, X11

and Ruby on Rails. Secondly, the Apache 2.0 license is as well as the MIT license a

permissive license and was founded in 2004. One main principle is that changes in

source code must be identified. Most commonly used by Android, Apache webserver

and Open Office. The third most widespread license is the GPLv3. This is in contrast

to the first two licenses a copyleft license, which was introduced in 2007. A major

characteristic of the GPLv3 license is the internationally orientation and the

compatibility with third party licenses - used by Linux (Honsel, 2020). Hence, by

considering all the different licenses it can be seen that the complexity of open source

software in the last years has changed intensively. Open source software and its

different licensing types have become a major impact when using open source

software.

2.2 Licensing – Proprietary Software

Compared to open source licensing, proprietary software licensing varies. Thus,

different companies make use of the way licensing can be used with proprietary

software.

It is often stated that developing the first software costs millions and the following

copies cost only a bit. But this statement is actually a cliché because packaged goods

can be developed for a few dollars each. Therefore, many proprietary software

providers take advantage of that and sell continually high-margin licenses of the same

June 2020 15

software. By improving these versions with new licenses, gives then vendors the

possibility to request extra fees. As this is not enough, proprietary software providers

see another business opportunity by using this concept, because they also sell their

support and maintenance services for that software. This whole business concept only

works if the source code is proprietary (Landy & Mastrobattista, 2008).

Also, entire businesses have started to “rent” the source code. This means that

proprietary providers impose, over a contractual agreement, on each license to hold

the source code secret and to distribute only binary derivatives of the source code.

Especially interesting is this offer for licenses, who need to modify and adapt the source

code (Landy & Mastrobattista, 2008). One of the most popular license agreements is

the End-User License Agreement, short EULA. This license agreement is mostly used

as a contractual agreement by software developers and users of the software. For

example, Mac, Android or Windows. Basically, the license can be seen as guideline

for terms and conditions and can set rules in which way the application can be used

(EULA, n.d.). The Microsoft EULA’s include the following note. “You may not copy or

post any templates available through Internet-based services on any network computer

or broadcast it in any media.” This means that if a publisher would use a Microsoft

Word template, and would adapt it to his business, the publisher would be in violation

with Microsoft’s EULA (DiBona & Cooper, 2005).

3 Advantages and Disadvantages

This chapter includes the advantages and disadvantages of open source software and

proprietary software. The aim is to give a basic understanding of general concerns.

Especially security concerns, will be highlighted in section 4.

3.1 Advantages and Disadvantages of Open Source Software

According to a market survey of bitkom, more than 800 companies with more than 100

employees in Germany have been asked to give an overview of the extent to which

open source software is already used in Germany and to what extent companies are

participating in using and developing open source. The outcome of this survey has

been summarized in the "Open Source Monitor 2019" of bitkom. One part of this survey

June 2020 16

was to examine the advantages and disadvantages these companies experience with

open source software. Overall, it has been examined that nine out of ten companies

with 100 or more employees see advantages in using open source software for their

company.

About 17 % of the companies named the cost savings factor as the greatest benefit,

as mostly no fees have to be paid for licenses, which adds another value. In regard to

the security factor, in total twelve percent of the companies have named security-

relevant advantages. Nine percent appreciates the high level of security provided by

regularly updates, and the remaining three percent appreciate low error-rates and high

stability (bitkom, 2019). This positive effect occurs because the source code is open

and “holes” are easier to be found and are therefore more secure and reliable (Landy

& Mastrobattista, 2008). According the openness factor, 9% see the advantages in

being independent from proprietary software providers. This aspect will be explicitly

mentioned in the part of the disadvantages of proprietary software. The uncomplicated

implementation of individual software adaptations, the access to the source code and

the large selection of open source components have been rated with 7 % each as an

advantage. Also, every twentieth company (6 %) appreciates the support of open

standards and interoperability, the diversity of open source providers (5 %) and the

compatibility between components and tools (5 %) as the greatest benefit of open

source software. With regard to the cooperation and innovation factor 8 % value the

exchange of knowledge within the open source community (5 %) and the promotion of

innovation and competition (3 %) as benefits in the use of open source software

(bitkom, 2019).

As we can see this survey has shown that most companies see many different

advantages in using open source software for their business. Obviously, the main

advantage when using open source software are the cost savings. This most likely

results as when using open source, normally no or less license fees have to be paid.

Also, companies like the advantage of the fast implementation. This may result in the

reason that open source is always available and easily to access with highly skilled

employees. Moreover, the benefit of the community has also been mentioned. Most

likely this advantage comes from the motivation of the people, who are using open

source software and the history of freedom and cooperation. Last but not least, it is

also important to note that 9 % value the benefits of security. Thus, it shows how

June 2020 17

necessary security concerns are for companies. More deeper insights will be explicitly

explained in section 4.

However, the advantages are also offset by various disadvantages. In this paper these

disadvantages will be divided into four categories: personnel, insecurity, IT security

and supply. The biggest problem these companies have mentioned was a lack of

skilled workers. Because experts in the company, who could, for example, adapt and

further develop the software to individual needs are rare. The reason is that only a half

percent of the world’s population knows how to code (McGovern, 2019). In this context,

a lack of training opportunities (6 %) and familiarization effort (5 %) for the specialists

are seen as disadvantage, which also could lead to the critique that community-

supported products will not be repaired (Landy & Mastrobattista, 2008). In regard to

the insecurity context, 6 % see unclear warranty situation, the uncertainty of the future

of open source software, no or imprecise supplier liability and legal uncertainties

regarding licensing as disadvantages. While 12 % of the companies cite security-

related aspects as advantages of open source software, a total of 7 % tend to see

these as cons. 4 % complained about security gaps and other 3 % saw the

susceptibility to errors as a disadvantage. These aspects of insecurity and IT security

will be focus in the section of security concerns more deeply. The last section, which

was examined are the disadvantages of supply because not every company

appreciates the large selection of open source providers and components as an

advantage. Thus, 6 % see this as a disadvantage. A total of 6 % sees a problem in the

lack of OSS solutions for their specific use cases and the conversion of proprietary

software to open source software as very complex, time-consuming and costly. As the

development is therefore very uncertain, another 6 % rate the warranty situation for

open source software as unclear. Further companies criticized the supplier liability

(3%) and 2 % cited legal uncertainties regarding licensing. The comparison shows the

advantages outweigh the disadvantages (bitkom, 2019). Overall, as the main lack of

open source software by this survey is the knowledge of skilled workers, it can be seen

that this is a worldwide problem and therefore, trainings and education is much needed

to further promote open source software.

June 2020 18

3.2 Advantages and Disadvantages of Proprietary Software

After the advantages and disadvantages of open source software have been analyzed

it is now important to compare the results with proprietary software. Thus, this chapter

will set the focus on proprietary software.

One of the main advantages of proprietary software for the end user is the ease of use

– the usability. As proprietary software is focused to serve directly the end user, it is

developed with a smaller scope and fewer functions. The importance of usability is that

not only developers but also application users can use the software. Furthermore,

proprietary software providers have to check and maintain their software products

regularly to be successful. Because the software they offer is designed for a long and

prosperous future with many paid upgrades. This leads to the positive result that

proprietary products are stable over time. Another positive aspect, which may sound

first irritating is the advantage of ownership. Typically, a company acquiring proprietary

software gets the full rights to their software product. The price is high, but the customer

support package comes normally with support and supply with updates, reworked

documentation and error corrections. Also, most of the time, these packages are

developed according to the needs of the companies. This gives the advantage that

companies appreciate the customized support of proprietary software provider. As the

scope is compared to open source with fewer functions etc., training and customer

care is more comprehensive, accessible and concise, especially when it comes to the

most important first step, the integration (Optimus Information, 2015). As also with

proprietary software not only advantages appear but also disadvantages, the next

paragraph focuses on the disadvantages.

A well discussed topic in times, when unknown incidents like the Corona virus occur,

dependencies may cause a great debate. One learning process was definitely the

dependency of medical equipment from Asian countries. Due to globalization and

David Ricardo’s theory of Comparative Cost Advantage (1817) that each country of

the world should focus on the export of their resources and strength with less costs,

countries have become more and more dependent. The current crisis has shown the

impacts of this enormous trend between dependency and globalization worldwide.

June 2020 19

This dependency does not only appear when it comes to raw materials and medical

equipment but also with systems. Because today companies like SAP, Microsoft and

Apple have gained so much power that many companies have become dependent.

The problem is most companies use the applications of individual manufacturers

uniformly because the service these big cooperates offer, is so attractive that looking

for alternatives does not make any sense. Also, individual manufacturers ensure that

the various updates are robust and that the products remain compatible. The type of

administrative management or the arrangement of functions remain the same over

years and the employees do not need any additional training and can carry out their

work. However, by conducting business based on one system, dependency takes

place, known under the term “vendor lock-in”. The dependency has grown so far that

switching to another product is so difficult, due to costs or trainings, and may even be

impossible. In the field of software, a possible vendor lock-in is caused by proprietary

file formats that can either not be opened and generated by competing applications or

only incorrectly. For example, proprietary protocols, such as those used in the network

environment, also enable data to be exchanged exclusively between the programs of

one manufacturer. Furthermore, employees who, after years of getting used to one

product, are unwilling to adapt themselves with another programme. Also, switching

costs complicate the changeover, because if the costs of switching to competing

software are likely to be significantly higher than the license costs for the product

currently in use, no change will take place. But what has bad effects on the one hand,

can be good on the other hand. Meaning that operating a proprietary system may also

be an advantage for companies. However, in order to resist dependency, companies

and states strive for diversification and cooperation with more parties to reduce the risk

of dependency. Therefore, open source software came into the spotlight recently. As

a competitor to proprietary software, open source represents a new way of developing

but has also big obstacle to overtake in business. Because being dependent is just one

issue, which occurs when considering proprietary and open source software (Freist,

2020).

Obviously, another big downside is that users are not able to modify the source code

as by definition, the internals of closed source software are blocked for viewing. The

users are only able to report errors that have occurred and wait for correction, if there

is no workaround or patch. This consultancy process is not only time consuming but

June 2020 20

usually more challenging for customers to make adjustments or optimizations in their

end product (Optimus Information, 2015). Considering the fact of being dependent is

a huge downside of proprietary software. Hence, companies should seek for

alternatives and also always reconsider the trust in one company when using

proprietary software.

4 Security Concerns of Software

In general, IT-security aims to protect information systems from unauthorised access

and unauthorised use, by guaranteeing accessibility of information, reliability and

integrity. According to software security this means that software has to still function,

even though it has been attacked. Most typical software vulnerabilities are cross-site

scripting and SQL injections. Problems at the architecture or conceptual level are

security holes and concerns at the implementing level are security failures, which are

even more difficult to detect (Sametinger, 2013). Thus, researches like Mouelhi, Kateb

and Traron have found out that security tests have become more important than ever

before in the last few decades. Solutions according to security modelling and

implementations of security mechanisms have been offered by many scientists. To

prevent security loopholes in the system, testing of implementing security mechanisms

is from major importance. One example of implementing a security mechanism is the

access control, which is very important as it secures that only authorized users can get

access to secured resources in a certain system (Mouelhi, El Kateb, & Le Traon, 2015).

Even though possibilities to protect a system exists, unfortunately, most applications

today lack security and one of the weakest parts is software security. Companies, who

use either proprietary or open source software have to deal with many risks.

Thus, companies have to modify their application development lifecycle to prevent

hackers to intrude, which requires a strong, internally implemented software security

(Mehta). For a better understanding the focus of this chapter is to consider security

concerns of proprietary and open source software individually and then evaluating

possible attacks companies have to deal with.

June 2020 21

4.1 Security Concerns – Open Source Software

Before diving deeper in the main topic of security concerns of open source software of

this work, the following paragraph gives a short overview of the adjustment and use of

open source in companies. Subsequently, security concerns of OSS will be discussed

in direct comparison with security concerns of proprietary software.

Getting back to the analysis of bitkom shows that the majority of the companies

evaluated, have positive attitudes towards OSS (75 %). Only 4 % of the companies

are more the less against OSS and have critical thoughts about it. Also positive is that

already 69 % make actually use of OSS. However, most of the companies do not

change the open source code. In total this shows that there is an existing interest,

companies use it to some extend but there is still room for improvement. As some

disadvantages of OSS, were already discussed, one reason why still 27 % do not use

OSS is the fear of security concerns that come with OSS (bitkom, 2019).

When it comes to the question whether open source software or proprietary software

is more secure the opinions differ drastically, because some people have claimed that

open source software is more secure than proprietary software and others do not

agree. At first sight, because of the open source code, it seems obvious the claim that

proprietary software is more secure than OSS is right. Because with a published source

code this means hackers can easily review the source code. However, a typical claim

of OSS proponent is the argument, that as the source code is published to everyone,

which means everybody can review it, not only developers but also hackers.

Programmers will detect vulnerabilities and report them and make OSS more secure

(Payne, 2002). Of course, in these claims there is some truth in it, but it takes more

aspects to consider whether open source or proprietary software is more secure. Due

to the research taken, many papers state (e.g. Crispin Cowan: “neither case is

absolutely true: they are essentially flip sides of the same coin”) there is no right or

wrong answer to this question. Thus, one of the main aspects of this paper is to give a

comprehensive understanding if these statements are correct or false. In general, OSS

gives attackers and defenders a great analytical possibility to find solutions against

software vulnerabilities. The importance is, if the defender does nothing against

security, then the attacker has a major advantage with OSS. But if the defender is

willing to support security when using OSS, he can also profit, as he has access to

June 2020 22

security techniques that are normally not feasible with closed-source software.

Because when using proprietary software, the user has only the option to accept the

degree of security the vendor offers, whereas with OSS the user can chose how high

the security standards should be (Cohan, 2003).

Before diving deeper in different aspects of security concerns of OSS it is necessary

to first define, what is actually meant with security concerns of open source software.

First of all, in this paper it is defined as either positive aspects or negative aspects of

security concerns compared to proprietary software. Furthermore, it is partly defined

between the security of the system and the risk connected with using the system. The

question whether the system is secure or not by using OSS depends on the degree of

security connected with the risk when using it defined by the combination of the

probability of an attack and the associated damage.

According to the argument of proponents that OSS is more secure because many

developers have access to the code and fix problems, a typical example of the

strengths of peer reviewing will further discuss this claim. It is known that in terms of

security the alleged difficulty for an attacker is to install a “backdoor” into an open

source program. In general a “backdoor“ is malicious code, which allows to simply and

secretly bypass security mechanisms by an attacker. This “backdoor” works if the

source code is connected in some way to a legitimate program or system or is either

embedded into a legitimate program or system. Thus, a “backdoor” in an operating

system could allow a person to login from a specific IP address as a system

administrator without using a password. Proponents of OSS argue that this “backdoor”

is nearly impossible to embed secretly as many developers have also access to the

source code and can reveal it.

For example, highlighting the success of detecting “backdoors” in open source

software was the “backdoor” in Borland/Inprise’s Inter-base database software in 1992.

When authorized programmers of the company embedded by mistake malicious code

in a proprietary software. If hackers would have been informed about this “backdoor”,

it would have been easy for them to have access to all installations of the database

system. This could have mean for the company a very malignant outcome, which has

not come true as the company decided to change the product to open source. Thus,

after nine years having a backdoor in the system, the change to open source software

June 2020 23

has helped to detect the mistake. This gives proponents of OSS a proof to claim that

when using proprietary software, a malicious code will longer be undetected as with

OSS.

Another negative example of backdoors in OSS is an error known as Heartbleed in

OpenSSL. Since OpenSSL is an important service for encrypted communication, a bug

in such systems is a problem that can affect millions of people simultaneously.

Heartbeat is an extension of OpenSSL and should periodically check if the connection

between server and client is still available. However, a programming error resulted in

an attacker being able to retrieve 64 kByte from the client's main memory for each of

these queries or for each response to this query. This gap remained undiscovered for

27 months and was commented by security specialist Bruce Schneider with the words:

"On a scale of 1 to 10, this error is an 11". Any information could be read from the

memory, including passwords in plain text. The vulnerability was caused by a thesis of

two students, who extended the Heartbeat code and made a programming error. This

bug remained undiscovered even after a core developer of OpenSSL had checked it

and continued to spread. This has end up in far-reaching consequences for encrypted

communication, as the security of the protected connection between computer

systems was neglected. A discussion about the quality of Open Source soon followed.

In the end, the mistake was due to the fact that the OpenSSL Foundation was

completely understaffed at that time and could only afford one full-time developer. The

vulnerability was simply overlooked. In the meantime, the OpenSSL Foundation has

reorganized itself and programmers from Oracle and Akamai are taking care of the

development. Sponsors from the business world also support the project financially.

Hence, it can be seen that when using open source software, it should be deeply tested

to detect vulnerabilities and to prevent bugs from spreading. This is especially from

importance in accordance to encryption issues (Borchers, 2020).

Furthermore, a major advantage for open source users are the extra rights for the

usage of OSS, which are not given with proprietary software. Companies can decide

whether to make a security audit or not. For corporates with an extreme interest of high

security standards the possibility to make internal security auditing is a great

advantage and most of the time obligatory. But not only auditing security issues of the

source code is an advantage, also the possibility to adapt and modify the source code

June 2020 24

is beneficial. If a company seeks high security standards, the ability to modify this

software to specifically meet the requirements is even more from importance (Payne,

2002). Hence, if a company has skilled IT specialists, the possibilities, which can be

used when using open source software are greater than with proprietary software.

Even though OSS is used and implemented in many systems, there are also

downsides to consider. Probably the most well-known fact that the source code is open

gives also attackers the possibility to easily access the software. This allows the

attacker to have access to a broad range of information, to seek for vulnerabilities and

failures in order to be able to attack in a targeted manner. This also gives the attacker

a major advantage as the attacker only needs to find one vulnerability to threaten the

system, whereas the defender has to find all possible weaknesses, to protect it.

As the main principle of OSS is the openness of the source code, it means that systems

with a large developer basis check and improve the code to a large extend and even

though many developers check and improve the source code, it does not necessarily

mean they identify all the bugs, which could compromise system security. This issue

is highlighted by the statement of NFR Security’s Ranum, “In my experience, not many

people actually read through the code. They just look at the readme files. When I wrote

the first public firewall toolkit, there were probably 2,000 sites using it to some degree,

but only about 10 people gave me any feedback or patches. So, I am way unimpressed

with the concept of open source.” Thus, proponents of proprietary software are using

this assumption to put the quality of closed software in spotlight. They argue that

employees, who make money with proprietary software are doing their job way much

better than the open source community (Lawton, 2002). In fact, this failure in identifying

bugs often occurs, as open source developers are mainly interested in the progress of

the development and further improvements and are not likely willing – as hackers - to

invest time and energy on software auditing. Comparing this security concern with

proprietary software, it shows that closed software is in this case is more secure as

vendors pay their developers to carry out auditing (Schneider, 2000).

To find a solution to this social problem of not putting enough focus on auditing the

source code, the Sardonix project was created. The aim of this project is to encourage

the open source community to a higher security standard of the open source code by

reporting who and which source code has been audited by a ranking system. It

June 2020 25

measures the quality by the amount of audited codes and the missed vulnerabilities,

which have been detected by others. This gives auditors the chance to use the rank

for their resumes. To audit the source code in an efficient way, static and dynamic

analyzing tools exist. In the case of the static analysis tool, analyses about mistrustful

code sequences, which could be vulnerable are made. On the other hand, as many

security issues are undecidable when using the static analysis, the dynamic tool often

helps. By using test loads while running the program, the developer can examine what

the program does (Cohan, 2003).

Important to consider is also the fact when it comes to auditing security of open source

that the quality of the software depends on the skills of the programmer. Normally for

many open source projects every help is highly welcomed, and a selection procedure

of developers does not exist, thus a quality check of the projects is missing (Bart,

2018).

Another aspect when it comes to security of open source and proprietary software is,

that for example the US government requires also for IT products to pass a Federal

Information Processing Standard audit before US agencies can buy them. This

certificate issued by the government for using products by US agencies can boost the

product. But as the costs for the compatibility testing is so high, mainly proprietary

vendors are willing to pay it (Lawton, 2002).

Also, a further pain point of OSS is that when a company buys proprietary software,

services and updates are also included. This means a software vendor is obligated to

publish all vulnerabilities along with fixes and software patches to the user. This is

different to the OSS community as there is no existing obligation to publish

vulnerabilities. Hence, the company using OSS is highly depended on the information

from previous OSS communities and security forums (Zhang, Malhotra, & Chen, 2018).

Another problem shows the trend of focusing more and more on features whether than

on the ease of use. Thus, highly developed system architecture has tended to be the

focus, which leads that the applications are difficult to provide and to manage. By

adding more and more software architectures, software vendors see this as a business

opportunity. Because customers are retained for a longer period of time, as new

information technology and hardware will only be implemented step by step and not at

June 2020 26

once. The focus has been set in a wrong way, while security functionality was mainly

left out (Schneider, 2000).

4.2 Security Concerns - WordPress

WordPress is nowadays the most popular open source content management system

(CMS) in the world. More than 409 million people view over 20 billion pages each

month and the users produce monthly around 70 million new posts and 77 million new

comments (WordPress, 2020). In 2019 over 60 million people have chosen WordPress

for their website design. Thus, this broad user community gives great incentives for

hackers to attack the system. In 2019, Mika Veenstra, a scientist on the Defiant Threat

Intelligence team, published that a malicious JavaScript has entered compromised

websites. The aim was to create a new user with administrator rights on the victim's

site. So, when an administrator logs in and views the infected site, he makes an AJAX

call via jQuery, which then creates an administrator account with malicious privileges.

According to Veenstra: “This AJAX call creates a user named wpservices with the

email wpservices@yandex.com and the password w0rdpr3ss, with this user in place,

the attacker is free to install further backdoors or perform other malicious activity.” Most

likely (98%) and happening in the current case, attackers use WordPress plugins of

third parties, which will be downloaded by the users to hack in. In 2019 around 55133

plugins were available and only 3 % of the plugins have been added in 2018. This

leads to the assumption that a major part of the plugins are old, not updated and still

in usage and ready to be hacked (Winder, 2019).

4.3 Security Concerns – Proprietary Software

It has been evaluated that open source software can be a hurdle or a blessing. For

companies to decide whether open source or proprietary software fits better in their

strategy, security concerns of proprietary software will be discussed further. One

reason why many companies decide to use proprietary software is that the data of the

company can be protected with legal and technical methods by technically detecting

the source code from attackers. This makes it even harder for attackers to find out the

code to write with the same functions. On the other hand, the company can also make

use of legal methods, which often include intellectual property rights on the program.

June 2020 27

Legally and technically, this gives companies the advantage to secure their data from

outsiders, who at least initially will not have access (Swire, 2006).

One of the differences that can be evaluated is that overall proprietary software

vendors are more organized than OSS communities. This leads to a higher integration

of all processes, especially when it comes to the process of security checks in big

software companies. Most commonly companies have modelled processes, which

include threats and the implementation of security utilities. Thus, big companies like

Microsoft conducts at least once in each product development cycle a safety audit.

During this check, companies use code analysis tools to execute it on the source code

and thus errors can be fixed. Overall, the whole source code is checked for security

issues. In comparison to open source, the development processes are less formal and

not always a security audit is conducted. As already mentioned above, everybody can

see the source code, which means that not necessarily users with advanced

knowledge see the source code and detect security errors. This might lead to the

problem that even more errors stay undetected. Beyond that most likely the tools and

skills big companies of proprietary software offer, are more progressive as the tools

the OSS community have access to. Even though, the OSS community welcomes

everybody to join, even without any information technical skills, big tech companies

have invested huge amounts of money to boost the development of open source

software. Companies like Red Hat and Intel etc. have employed full time developers

to work on Linux (Clarke & Dorwin).

Another major point to consider is the fact that a company has (leaving out external

testers) a monopoly, when publishing its proprietary software for the first time without

overlaps of pre versions. This results in that only employees have all the information

about the source code. If only the company has the information about the source code

this also means that if vulnerabilities will be detected by the proprietary vendor itself,

the vulnerability will be undisclosed and not available for the public. Thus, a vendor

has to think about its strategy whether to disclosure the information about the

vulnerability or not. If the proprietary software provider disclosure the vulnerabilities of

the software, most commonly the vendor must expect that immediately sales will stop,

and the reputation of the company will suffer from it. Overall, in the proprietary software

industry this has led to the problem that most vendors have undisclosed their

vulnerabilities. In order to prevent this concern, laws were written to disclosure

June 2020 28

vulnerabilities to protect customers. This creates also the possibility for customers to

directly address the vendor with the error. On the other side, disclosure can also have

advantages as customers tend to trust the vendor as its disclosure’s vulnerabilities,

which customers are dependent on. This leads to a higher trust and to a long-term

quality reputation of the proprietary software vendor. Also, when disclosure errors of

the software, external programmers can have access to it and make suggestions on

how to solve the problem.

By making an impactful decision, the decision makers of the company seek for trust

when making an investment. As above mentioned, proprietary software providers, who

disclosure vulnerabilities will gain trust in the long-term relationship with their

customers.

Considering this aspect that customers are more willing to buy from a proprietary

software provider, who disclosure errors and is likely to accept help from external

programmers the following assumption can be made. If a vulnerability is undisclosed

and only known by an attacker, it will not be published, and the knowledge will only

stay by the attacker. Thus, most commonly big companies, which buy software prefer

the disclosure of such vulnerabilities. Otherwise, this would mean that worst case a

customer can lost all his sales as only the attacker has knowledge about the

vulnerability (Swire, 2006). Hence, it can be seen that a user of proprietary software is

highly dependent on the proprietary provider. A company has to trust the vendor for

reporting vulnerabilities in the software. This is especially from importance when

confidential business information is involved.

4.4 Security Concerns – Volkswagen AG

After examining the downside of proprietary software, a well-known example will

highlight the security concern of proprietary software in the industry on a real case.

News about the Volkswagen exhaust gas scandal (VW) was spread all around the

world. A part of their reputation in the US and worldwide fall apart because of the fraud

and the aim of being the leader of manufacturing “Clean Diesel” cars around the world.

Simply as it can be, VW used proprietary software to reach this goal but what they did

was not legal in any way. VW has installed software in their cars that caused in the

real-world higher emissions from diesel cars than in the tests they did before. In 2015

it has been determined that in the US, VW has used for their diesel cars (e.g. Käfer,

June 2020 29

Golf, Jetta and Passat as well as Audi A3) a software-operated device, which

recognizes when emission tests will be conducted. During those tests the software

restricts the emissions of the cars to fulfill the requirements of the US government.

After the test was conducted the software and for normal usage of the cars, the cars

emit up to 40 times the legal emission level. Thus, the Environmental Protection

Agency (EPA) has VW assigned to fix these extra costs. But as this problem was not

only solved with a software change, VW had to provide hardware modifications as well

(Thurrott, 2015). In total approximately 11 million cars worldwide are affected (Focus,

2015). With open source software this fraud would have probably detected faster as

with proprietary software.

4.5 Attacks in Proprietary and Open Source Software

In many cases it is difficult to differentiate between the question if open source is more

secure than proprietary or the other way around. Thus, the following paragraph

highlights two examples on which both kinds of software have to deal with security

concerns. The first example is about the well-known “day zero” attack, which is a

potentially serious software security weakness. Basically, it is a simple error in software

but can cause great difficulties before the consequences are even discovered. A major

problem is that zero-day attacks are not easy to detect. The attack starts as soon as

the bug or vulnerability is exploited to introduce malware. This happens even before

developers have implemented a patch to close or defense it. As developers are also

humans, errors can occur, thus developers can create software that contains security

errors without being aware about it. Most likely the attacker finds the vulnerability of

the company and writes and implements exploit code while the vulnerability is still

open. The best case for the company would be to find the attack as early as possible,

as a business model has been established on the darknet to sell the hack. When an

attack is published, developers start writing a patch to close the vulnerability, but to

detect the error it can take years (FireEye). By considering the fact that most

vulnerabilities stay over years undetected this gives a great opportunity for cyber

operations, which do not have to be only done by attackers but also by governments

or militaries (Ablon & Bogart, 2017).

June 2020 30

Hence, stakeholders of companies may ask themselves what can actually be done to

protect the company. The positive fact is that organizations can protect themselves in

different ways. Firstly, by ensuring the software and operating systems are up to date.

Secondly, individuals can choose Security Socket Layer (SSL) web pages with

encryption of transmitted data. Lastly, companies should make use of including local

area networks to secure the transmitted data (Kaspersky, n.d.).

Another typical attack of proprietary and open source is the brute force attack, which

aims to hack a username or password or to discover a covert website as well as the

key used to encode a message. This attack attempts of guessing the required

information by the trial-and-error principle. Even though this kind of attack is outdated

it is commonly used by hackers and is very efficient but can take, depending on the

complexity of a password years to hack it. Thus, attackers have developed tools to

fasten this process as for example, the most standard tool known as “dictionary

attacks”. Basically, the attacker is searching for a specific target and checks passwords

with this specific username by using unabridged dictionaries and augment words with

special characters and numerals.

Thus, it is from importance to have a powerful CPU because for example using a CPU,

which can try 30 passwords per second would take more than two years to hack the

password. Whereas adding a powerful GPU card would take around three to four days

with 7100 passwords per second to hack the password with the same computer. This

shows how easy it can be for an attacker to get your passwords.

By considering the fact that attackers with malicious intent have access to confidential

data, it is necessary to know some tools to protect it. One possibility, which can help

to overcome an attack is the functionality of login. Because if the user includes the

function that the password can only be typed in three times before a lockout is activated

for minutes, the attacker most likely switch to another user on which brute force attacks

are easier to make. Another simple way to deal with it is that system administrators

have to ensure their passwords are long enough - as more bits are included as more

difficult it is to hack the password. These examples were explicitly important for IT

specialists but as it is also important to protect the normal user, the following guidelines

give a quick understanding on how to protect a “normal” users password. One simple

and efficient way is to use a complex password and change this regularly. This

password should include around ten characters, including symbols and numbers

June 2020 31

(Kaspersky, n.d.). By considering both software types it can be seen that software in

general is a main target of cyber-attacks. Hence, it does not always depend on which

type of software someone is using and as most companies use both proprietary and

open source software it is even more important to consider both.

5 Software Strategies

The chapter of different security concerns according to open source software,

proprietary software and both has shown how vulnerable software can be when it

comes to attacks. Thus, it is from even more importance to consider strategies, how

companies can protect their data from unauthorized intruders. This chapter will give an

overview what companies can do to be more secure.

As it is often difficult to differentiate between proprietary and open source software and

many of the vulnerabilities are also shared, IT specialists can make use of the National

Vulnerability Database (NVD), which is the most comprehensive and most collected

database of published vulnerabilities. It was created by the NIST Computer Security

Division, Information Technology Laboratory and was found in 2000 and since then the

development of improvements take place constantly. According to the National

Institute of Standards and Technology, the “NVD is the U.S. government repository of

standard based vulnerability management data represented using the Security Content

Automation Protocol (SCAP). This data enables automation of vulnerability

management, security measurement, and compliance. The NVD includes databases

of security checklist references, security related software flaws, misconfigurations,

product names, and impact metrics.” Important to consider is, the NVD does not testing

vulnerabilities, instead the database relies on third parties, mostly security specialists

and vendors of software. After considering what it does not it is important to have in

mind why the NVD is so successful and useful for companies. As the National Institute

of Standards and Technology does not testing vulnerabilities, its employees execute

and analyse reported Common Vulnerabilities and Exposures (CVE) by using the CVE

Dictionary. This leads to the examination of vulnerability types and relevant statements

etc., which can be used by companies to increase their software security (National

Institute of Standards and Technology, n.d.).

June 2020 32

For a company with vulnerabilities analyzed in the database the NVD can help a lot

but on the other side, publishing vulnerabilities can also have negative side effects.

Because attackers can easily make use of these published and analyzed

vulnerabilities. Therefore, the NVD gives them the opportunity to screen vulnerabilities

and seek information about which components are vulnerable and how the attack can

be conducted. Openness is not always the most secure way.

5.1 Open Source Software Strategies

Specifically, in regard to open source, the following information will provide another

example on how companies can secure their data. Due to the increasing use of OSS

in the last years, the necessity of tracking components to protect companies from

software vulnerabilities has become even more important. Normally, software

development includes operating systems, leading to the problem that manual track is

hard to conduct and requires scanning source codes, dependencies and binary data

automatically. Thus, the Software Composition Analysis (SCA) is a solution that is

particularly important to support the risk management, security and compliance with

licensing requirements. SCA is the process of automating the visibility of the use of

open source software. One major advantage of SCA is the possibility to receive a list

of all components included in the applications, the license types and versions of

components. This list is especially from importance for IT specialists to get a better

understanding of the components used and leads to an increased knowledge about

potential security vulnerabilities. As examined already, licensing is a relevant part

regarding OSS and those companies using OSS have to comply to OSS licenses.

Therefore, applying the Software Composition Analysis will help companies to become

aware of certain necessities, respond to license compliance, establish policies etc.

SCA enables proactive and continuous monitoring. For a better understanding, of

workloads, SCA proactive monitors for security and vulnerability issues and enables

users to generate significant alerts for recently discovered vulnerabilities in current and

distributed products. These two examples have shown a small part of the advantages

with conducting a SCA and as more than 50 percent open source code is compromised

in software applications, the need for higher security standards is given. Thus, SCA

can be a solution to generate higher security standards (Flexera, n.d.).

June 2020 33

5.2 Proprietary Software Strategies

After examining a strategy on how companies can protect their data when using OSS,

it is also necessary to focus on protecting proprietary software from hackers. Microsoft

as one of the leading technology companies and producer of hardware and software

in the world has the responsibility to guarantee a high standard of security. To ensure

this, the Microsoft Security Response Center (MSRC), which is part of the security

defense team, is developing for more than 20 years the security level of Microsoft. The

following text excerpt states the mission of Microsoft:

“Our mission is to protect customers from being harmed by security vulnerabilities in

Microsoft's products and services, and to rapidly repulse attacks against the

Microsoft Cloud. We see this playing out in our everyday business by focusing on

preventing harm, fast defense, and building trust in the community.”

This statement gives a first impression how serious Microsoft sees security concerns

for their business success and customer relationships. The problem with attackers is

that it never stops, because even if a company has defended one attack successfully,

the next attack occurs. Also, considering the fact that during the last years the amount

of attacks has increased. This negative development of cyber-attacks can be seen in

Figure 2 (Statista, 2020), which shows the increasing amount of monetary damage

reported to the Federal Bureau of Investigation’s (FBI) Crime Complaint Center (IC3).

The aim of the IC3 is to report cyber-attack activity (Federal Bureau of Investigation ,

2019). Overall this negative

impact might highlight the fact

that Microsoft has to continuously

and dynamically engage in

innovating new strategies for

defending their products

(Microsoft, n.d.). As the operating

system Windows is programmed

and developed by Microsoft, this

product is a great example on

how Windows increases its Figure 2: (statista, 2020)

June 2020 34

security standard dynamically. Thus, for everybody who is familiar with Windows is

most likely also familiar with the informally called activity “Patch Tuesday”. Every

second tuesday in a month, Microsoft releases security updates for their proprietary

software, which involve patches for vulnerabilities. And every fourth Tuesday of each

month these updates come along with new features that are not only related to security.

This routine helps especially network administrators to plan their schedules for

testing’s and further software related activities. As the “Patch Tuesday” has become

very successful, companies like Adobe copied the idea with also having a schedule

(Bott, n.d.).

6 Microsoft and Open Source Software

Microsoft as the leading software and hardware company with over a million

companies using Office 365 worldwide has changed its strategy from being the main

proprietary software producer to becoming a leading edge in open source software

(Liu, 2020). Today Microsoft is one of the main players when it comes to open source,

but only a few years back in the past, Microsoft’s adjustment to open source was quite

different. Because former CEO Steve Ballmer once called Linux and the GPL “cancer”

(Tung, 2019). But after some time and further technological developments and the

change in management this attitude has changed. In 2014, with the statement from the

new Microsoft CEO Satya Nadella that “Microsoft loves Linux” the company has

changed its strategy. In regard to the Azure Cloud of Microsoft, Nadella also admitted

that already 20 percent of the operating systems on Azure are Linux and already

contribute to Microsofts success story. Even though Microsoft Azure is still a

proprietary software this has shown one example how Microsoft has changed its way

towards open source. During the last years Microsoft contributed on several open

source programs, for example, the open compute data center project of Facebook

(Vaughan-Nichols, 2014).

6.1 Latest Contribution of Microsoft to Open Source Software

In 2019, Microsoft announced its collaboration with its competitor Linux to make

Microsoft Teams also available for Linux users. The idea of Microsoft Teams is to bring

June 2020 35

users together via chat, video or calls. For Linux users, Microsoft Teams is now the

first Microsoft 365 app, which can be used also via Linux. As it is in the interest of

Microsoft to innovate their offerings, the collaboration with Linux is also a great chance

for developers to increase their number of users. This big step from Microsoft shows

exactly their intention against the original statement, comparing Linux with cancer

towards a great collaboration with Linux. But not only Microsoft profits from this

collaboration, also Linux does. To give an example on how Linux is positively

convinced, Jim, Zemlin, Executive Director at The Linux Foundation has stated: “2019

has been another incredible year in open source, and Linux continues to be at the

heart of all the growth and innovation. I’m really excited about the availability of

Microsoft Teams for Linux. With this announcement, Microsoft is bringing its hub for

teamwork to Linux. I’m thrilled to see Microsoft’s recognition of how companies and

educational institutions alike are using Linux to transform their work culture.” (Salazar,

2019) Overall, with the shift in the C-Suite with CEO Satya Nadella Microsoft has made

a huge progress towards open source software. Thus, it is even more important to also

guarantee high security standards.

6.2 Microsoft – Open Source Security

After examining how Microsoft secures their proprietary software, the next paragraph

will give a short overview how Microsoft emphasizes open source security. First of all,

Microsoft is a major player in this field, the question is now, how customer benefits and

how Microsoft approaches security concerns for their customers.

The three following main benefits states the benefits, which customers have by using

open source:

1. A major benefit is the community, because bugs are reported, features are

contributed and costs as well as the benefits are shared.

2. With open source, software can be developed faster as it is possible to connect

components, which already exists. Instead of implementing them in a new way.

3. The overall quality is higher, as the focus is more likely on specialized software

components.

June 2020 36

With the following steps, Microsoft has stated how companies can reduce their risks

when using open source software:

1. Important to reduce the risk of attacks and vulnerabilities is to know the

components a company is using. This can be done, by automation tools like

OWASP, Snyk and WhiteSource Bolt. For the check of the components it is

necessary to include enough metadata.

2. After all components have been identified, it is important to check them for

vulnerabilities. This can be done by several different checks such as using a

commercial security intelligence, perform a static analysis, comprehensive

security reviews and by ensuring no public vulnerabilities are contained (CVE’s).

Most likely the companies, which are using open source tools, can also make

use of their provided vulnerability alerts. It also can help by monitoring the NVD

for new vulnerabilities.

3. Another step to reduce security risks in a company is to always update the

components. This is also from importance even though no vulnerabilities have

been detected as some of the vulnerabilities have not been published and the

risk to lose confidential data is more expensive and challenging than actually

keeping the components up to date.

4. One main process, which each company should have when using open source

software is the process of risk management. Thus, by detecting a vulnerability

the stakeholders can use the strategy for a security response (Microsoft, n.d.).

By addressing these four steps when using open source software companies can

reduce their risk of losing data by hackers.

June 2020 37

7 Conclusions

In regard to the question whether open source software or proprietary software is more

secure it can be said that both software types have their advantages and

disadvantages.

In general, open source software includes for companies the great advantage that it

involves less costs as proprietary software, however it needs employees with

knowledge to implement it. On the other side, proprietary software comes usually with

services and updates, nevertheless it has the negative effect of becoming depended.

According to security concerns of open source and proprietary software it can be seen

that when it comes to open source software, a large community does not directly imply

that vulnerabilities will be detected and reported as also less skilled people can join the

community. However, the fact that some proprietary vendors may hide vulnerabilities

of fearing to lose their image, shows again the factor of being depended. Especially in

times of further expansion of digital transformation, being dependent from only one

company can be very risky as each company has to react as flexible as possible. Also,

as with an increase in digital transformation and considering the fact of the current

pandemic, attacks are increasing. It is from importance to have a clear understanding

on how to react and which process steps will be conducted in case of an attack.

Because knowing vulnerabilities will reduce the risk of losing confidential information.

Thus, if a company has highly skilled IT employees it should consider using open

source software as the source code can be modified and thus a company can react

much faster. But to answer the question whether open source or proprietary software

is more secure it can be said that there is no right or wrong answer to the question. It

highly depends on how skilled the IT specialists according to open source software of

a company are and which proprietary vendors will be considered. As big tech

companies offer already regularly patches as well as the disclosure of vulnerabilities

on their platforms, the risk can be reduced. But if a company does not emphasize

security and does not update the program, each possibility offered is unnecessary.

Overall, it can be said that only when a company put much effort on securing their

software, both software types can be secure.

June 2020 38

8 Bibliography

Ablon, L., & Bogart, A. (2017). Zero Days, Thousands of Nights. Rand Corporation.
Avner, G. (2019). Your Guide to Open Source Vs Proprietary Software Security.

Retrieved April 20, 2020, from:https://resources.whitesourcesoftware.com/blog-
whitesource/your-guide-to-open-source-vs-proprietary-code-security

Bart, J. (2018). Increased security through open source . Nijmegen: Institute for
Computing and Information Sciences .

Bitkom. (2019). Open Source Monitor - Studienbericht 2019 . Retrieved May 15, 2020,
from:https://www.bitkom.org/sites/default/files/2020-
02/20200218_studienbericht-open-source-monitor-2019_0.pdf

Bott, E. (n.d.). Insider's guide to managing Microsoft Patch Tuesday. Retrieved March
21, 2020, from: https://www.techrepublic.com/article/insiders-guide-to-
managing-microsoft-patch-tuesday/

Bouras, C., Kokkinos, V., & Tseliou, G. (2012). Methodology for Public Administrators
for selecting between open source and proprietary software. Retrieved April 14,
2020, from: http://dx.doi.org/10.1016/j.tele.2012.03.001

Borchers, D. (2020). Sicherheit mit Hintertür. ct Innovative 2020, Heise Medien GmbH
& CO. KG.

Brodsky, Z. (2018, February). Git Much? The Top 10 Companies Contributing to Open
Source. Retrieved May 15, 2020, from:
https://resources.whitesourcesoftware.com/blog-whitesource/git-much-the-top-
10-companies-contributing-to-open-source

Clarke, R., & Dorwin , D. (n.d.). Is Open Source Software More Secure?. Retrieved
May 19, 2020, from:
https://courses.cs.washington.edu/courses/csep590/05au/whitepaper_turnin/o
ss(10).pdf

Cohan, C. (2003). Software Security for Open-Source Systems. The IEEE Computer
Society. DOI: 10.1109/MSECP.2003.1176994

DiBona, S., & Cooper. (2005). Open Sources 2.0: The Continuing Evolution. O'Reilly
Media; 1 edition (31 Oct. 2005)

EULA. (n.d.). EULA template. Retrieved May 13, 2020, from:
https://www.eulatemplate.com

Federal Bureau of Investigation. (2019). 2019 Internet Crime Report. Federal Bureau
of Investigation.

FireEye. (n.d.). What is a Zero-Day Exploit?. Retrieved April 16, 2020, from:
https://www.fireeye.com/current-threats/what-is-a-zero-day-exploit.html

Flexera. (n.d.). The typical, modern software application is comprised of more than 50
percent open source code. Retrieved March 29, 2020, from:
https://www.flexerasoftware.com/blog/what-is-software-composition-analysis/

Focus. (2015). Manipulationssoftware in 11 Millionen Autos weltweit im Einsatz.
Retrieved April, 14, 2020, from: https://www.focus.de/finanzen/news/vw-
konzern-raeumt-ein-manipulationssoftware-in-11-millionen-autos-weltweit-im-
einsatz_id_4964048.html

free software (why it is not feee) http://www.gnu.org/philosophy/free-sw.html free
software foundation

Freist, R. (2020). Die Souveränität wiederverlangen. IT & Karriere. Heise Medien.

https://www.techrepublic.com/article/insiders-guide-to-managing-microsoft-patch-tuesday/
https://www.techrepublic.com/article/insiders-guide-to-managing-microsoft-patch-tuesday/

June 2020 39

Github. (n.d.). Build like the best teams on the planet. Retrieved May 11, 2020, from:
https://github.com/team

Hansen, H., Mendling, J., & Neumann, G. (2015). Wirtschaftsinformatik. De Gruyter.
Honsel, G. (2020). Einmal Utopia und zurück . Technology Review.
Internet Archive. (n.d.). Why `Free Software' Is Too Ambiguous. Retrieved March 28,

2020 from:
http://web.archive.org/web/19991013111143/http://opensource.org/free-
notfree.html

Kaspersky. (n.d.). What’s a Brute Force Attack?. Retrieved May, 11, 2020, from:
https://www.kaspersky.com/resource-center/definitions/brute-force-attack

Kaspersky. (n.d.). What is Zero Day Exploit. Retrieved May 11, 2020 from:
https://www.kaspersky.com/resource-center/definitions/zero-day-exploit

Landy, G., & Mastrobattista, A. (2008). A Pragmatic Guide to 9 Open Source. In A. J.
Gene K. Landy, The IT / Digital Legal Companion: A Comprehensive Business
Guide to Software, IT, Internet, Media and IP Law. Syngress; 1 edition.

Lawton, G. (2002). Open Source Security: Opportunity or Oxymoron?. DOI:
10.1109/2.989921

Liu, S. (2020). Number of Office 365 company users worldwide as of February 2020,
by country. Retrieved May 15, 2020, from:
https://www.statista.com/statistics/983321/worldwide-office-365-user-numbers-
by-country/

McGovern, N. (2019, December). GNOME. Retrieved April 10, 2020, from:
https://blogs.gnome.org/engagement/2019/12/31/why-we-need-a-free-
desktop/

Mehta, D. M. (n.d.). Effective Software Security Management. Retrieved April 27, 2020,
from: https://owasp.org/www-pdf-
archive/Effective_Software_Security_Management.pdf

Microsoft. (n.d.). Microsoft Seucirty Response Center. Retrieved May 14, 2020, from:
https://www.microsoft.com/en-us/msrc/mission?rtc=1

Microsoft. (n.d.). Open Source Security. Retrieved May 14, 2020, from:
https://www.microsoft.com/en-
us/securityengineering/opensource?activetab=security+analysis%3aprimaryr3

Mouelhi, T., El Kateb, D., & Le Traon, Y. (2015). Inroads in testing access control.
from: Advances in Computers, Volume 99, DOI:
10.1016/bs.adcom.2015.04.003

National Institute of Standards and Technology. (n.d.).National Vulnerability Database.
Retrieved April 25, 2020, from: https://nvd.nist.gov/general

Online Etymology dictionary. (n.d.). Retrieved March 18, 2020, from.
https://www.etymonline.com/word/proprietary

Open Source Initiative. (n.d.). Open Source Initiative. Retrieved March 21, 2020, from:
https://opensource.org

Optimus Information. (2015). Open-Source vs. Proprietary Software Pros and Cons.
Retrieved April 16, 2020, from: http://www.optimusinfo.com/downloads/white-
paper/open-source-vs-proprietary-software-pros-and-cons.pdf

Payne, C. (2002). On the security of open source software . Murdoch: School of
Information Technology.

Sahoo, R., & Sahoo, G. (2016). Computer Science with C++. New Saraswati House
(India) Pvt. Ltd.

https://owasp.org/www-pdf-archive/Effective_Software_Security_Management.pdf
https://owasp.org/www-pdf-archive/Effective_Software_Security_Management.pdf

June 2020 40

Salazar, M. (2019). Microsoft Teams is now available on Linux. Retrieved May 15,
2020, from: https://techcommunity.microsoft.com/t5/microsoft-teams-
blog/microsoft-teams-is-now-available-on-linux/ba-p/1056267#

Sametinger, J. (2013). Software Security. Linz : Johannes Kepler University. DOI:
10.1109/ECBS.2013.24

Schneider, F. (2000). Open Source in Security: Visiting the Bizarre. DOI:
10.1109/SECPRI.2000.848477

Stallman, R. (2002). Selected Essays of Richard M. Stallman, 3rd Edition. Free
Software Free Society.

Statista. (2020). Amount of monetary damage caused by reported cyber crime to the
IC3 from 2001 to 2019. Retrieved May 19, 2020 from:
https://www.statista.com/statistics/267132/total-damage-caused-by-by-cyber-
crime-in-the-us/

Swire, P. (2006). A Theory of Disclosure for Security and Competitive Reasons: Open
Source, Proprietary Software, and Government Systems. Houston Law Review,
Vol. 42, Issue 5, 2006 January 31, 2006

Thurrott, P. (2015). Volkswagen Used Software to Cheat on Emissions. Retrieved April
28, 2020, from: https://www.petri.com/volkswagen-used-software-to-cheat-on-
emissions

Tung, L. (2019). Richard Stallman to Microsoft: Publicly retract 'open source is a
cancer' claim. Retrieved April 5, 2020, from:
https://www.zdnet.com/article/richard-stallman-to-microsoft-publicly-retract-
open-source-is-a-cancer-claim/

Vaughan-Nichols, S. J. (2014). Why Microsoft loves Linux. Retrieved May 9, 2020,
from: https://www.zdnet.com/article/why-microsoft-loves-linux/

White Source. (2020). The State of Open Source Security Vulnerabilities - White
Source Annual Report. Retrieved May 2, 2020 from:
https://www.whitesourcesoftware.com/open-source-vulnerability-management-
report/

WhiteSource. (2020, February). The Complete Guide for Open Source License. White
Source. Retrieved April 6, 2020, from:
https://resources.whitesourcesoftware.com/licenses/the-complete-guide-for-
open-source-licenses-2020

Wiedemann, A., Holey, T., & Wiedemann, A. (2007). Wirtschaftsinformatik. Klaus
Olfert. Kiehl.

Winder, D. (2019, August). Critical 'Backdoor Attack' Warning Issued For 60 Million
WordPress Users. Retrieved May 1, 2020, from:
https://www.forbes.com/sites/daveywinder/2019/08/31/critical-backdoor-
attack-warning-issued-for-60-million-wordpress-users/

WordPress. (2020). A live look at activity across WordPress. Retrieved May 4, 2020,
from: https://wordpress.com/activity/

Zhang, Y., Malhotra, B., & Chen, C. (2018). Industry - Wide Analysis of Open Source
Security. DOI: 10.1109/PST.2018.8514185

http://houstonlawreview.scholasticahq.com/issue/741-vol-42-issue-5-2006
https://www.whitesourcesoftware.com/open-source-vulnerability-management-report/
https://www.whitesourcesoftware.com/open-source-vulnerability-management-report/
https://resources.whitesourcesoftware.com/licenses/the-complete-guide-for-open-source-licenses-2020
https://resources.whitesourcesoftware.com/licenses/the-complete-guide-for-open-source-licenses-2020
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FPST.2018.8514185

