

Seminar paper

BSF4ooRexx:

JSP with javax.script Languages

Author: Nora Lengyel

Matriculation no: 1552636

Class Title: Projektseminar aus Wirtschaftsinformatik (Schiseminar)

Instructor: ao.Univ.Prof. Mag. Dr. Rony G. Flatscher

Term: Winter Term 2019/2020

Vienna University of Economics and Business

1

Content
1. Introduction ... 3

2. Tomcat .. 4

2.1 Introduction to Tomcat ... 4

2.2 The Installation of Tomcat .. 5

2.2.1 Environment Variables ... 7

2.2.2 Tomcat Web Application Manager ... 9

3. Cookie ... 11

3.1 Introduction to Cookies ... 11

3.2 Functioning of a Cookie .. 12

4. JSP (Java Servlet Pages) ... 14

5 Taglib .. 14

5.1 JSR-223 Taglib ... 14

5.2 BSF Taglib... 15

5.2.1 Apache Ant .. 15

5.2.2 Settings for the BSF Taglib in web.xml ... 16

5.2.3 Tag Library Descriptor (.tld) .. 17

6. Jython Cookie in JSP .. 19

6.1 File Structure... 19

6.2 The BSF .. 19

6.3 Jython Cookie in JSP with BSF Taglib ... 21

6.3.1. Creating a Cookie .. 21

6.2.2 Changing a Cookie ... 24

6.2.3 Deleting a Cookie ... 25

6.2.4 Show the List of Cookies ... 26

7. Rexx Cookie in JSP with BSF Taglib .. 27

7.1 File Structure... 27

7.2 RexxTaglib.jsp .. 27

7.2.1. Creating a Cookie .. 27

7.2.2 Changing a Cookie ... 30

7.2.3 Deleting a Cookie ... 31

7.2.4 Show the List of Cookies ... 33

8. Rexx Cookie in JSP with JSR-223 Taglib .. 35

8.1 File Structure... 35

8.2 RexxJSRTaglib.jsp ... 35

8.2.1 Creating a Cookie ... 35

8.2.2 Changing a Cookie ... 37

2

8.2.3 Deleting a Cookie ... 38

8.2.4 Show the List of Cookies ... 39

9. Conclusion ... 41

Literaturverzeichnis ... 42

List of Figures

Figure 1 - Tomcat directory structure ... 4

Figure 2 - Versions of Tomcat installer .. 5

Figure 3 - Port settings in Apache Tomcat installer... 6

Figure 4 - Start, restart or stop the Tomcat in the Computer Management Window 7

Figure 5 - Opening advanced system settings to change the environment variables 7

Figure 6 - The CATALINA_HOME system variable ... 8

Figure 8 - tomcat-users.xml ... 9

Figure 9 - Defining the Display Name .. 9

Figure 10 - Tomcat Web Application Manager ... 10

Figure 11 - Cookies in Google Chrome .. 12

Figure 12 - How are cookies created? ... 12

Figure 13 - web.xml for JSR-223 Taglib ... 15

Figure 14 - built.xml ... 16

Figure 15 - web.xml for BSF Taglib .. 17

Figure 16 - Tag Library Descriptor ... 18

Figure 17 - Directory structure for Jython ... 19

Figure 18 - JythonEngine.java .. 20

Figure 19 - JythonCookie.jsp 1/4 ... 22

Figure 20 - Jython cookie in browser .. 22

Figure 21 - Jython cookie created! .. 23

Figure 22 - JythonCookie.jsp 2/4 ... 24

Figure 23 - Jython cookie changed! ... 25

Figure 24 - JythonCookie.jsp 3/4 ... 25

Figure 25 - JythonCookie.jsp 4/4 ... 26

Figure 26 - File structure for Rexx Cookie with BSF Taglib .. 27

Figure 27 - RexxTaglib.jsp 1/4 ... 29

Figure 28 - RexxTaglib.jsp 2/4 ... 31

Figure 29 - RexxTaglib.jsp 3/4 ... 32

Figure 30 - RexxTaglib.jsp 4/4 ... 33

Figure 31 - Rexx cookie created! ... 34

Figure 32 - Rexx cookie modified! ... 34

Figure 33 - File structure for Rexx Cookie with JSR-223 Taglib ... 35

Figure 34 - RexxJSRTaglib.jsp 1/4 .. 36

Figure 35 - RexxJSRTaglib.jsp 2/4 .. 38

Figure 36 - RexxJSRTaglib.jsp 3/4 .. 39

Figure 37 - RexxJSRTaglib.jsp 4/4 .. 40

file:///C:/Users/noral/Desktop/BIS%20V%20-%20Schiseminar/Seminararbeit%20absolut_final_corrected/Seminararbeit%20-%201552636.docx%23_Toc28020845
file:///C:/Users/noral/Desktop/BIS%20V%20-%20Schiseminar/Seminararbeit%20absolut_final_corrected/Seminararbeit%20-%201552636.docx%23_Toc28020846
file:///C:/Users/noral/Desktop/BIS%20V%20-%20Schiseminar/Seminararbeit%20absolut_final_corrected/Seminararbeit%20-%201552636.docx%23_Toc28020847
file:///C:/Users/noral/Desktop/BIS%20V%20-%20Schiseminar/Seminararbeit%20absolut_final_corrected/Seminararbeit%20-%201552636.docx%23_Toc28020848
file:///C:/Users/noral/Desktop/BIS%20V%20-%20Schiseminar/Seminararbeit%20absolut_final_corrected/Seminararbeit%20-%201552636.docx%23_Toc28020854
file:///C:/Users/noral/Desktop/BIS%20V%20-%20Schiseminar/Seminararbeit%20absolut_final_corrected/Seminararbeit%20-%201552636.docx%23_Toc28020860
file:///C:/Users/noral/Desktop/BIS%20V%20-%20Schiseminar/Seminararbeit%20absolut_final_corrected/Seminararbeit%20-%201552636.docx%23_Toc28020863
file:///C:/Users/noral/Desktop/BIS%20V%20-%20Schiseminar/Seminararbeit%20absolut_final_corrected/Seminararbeit%20-%201552636.docx%23_Toc28020869
file:///C:/Users/noral/Desktop/BIS%20V%20-%20Schiseminar/Seminararbeit%20absolut_final_corrected/Seminararbeit%20-%201552636.docx%23_Toc28020876

3

1. Introduction

This seminar paper provides information about the Apache Tomcat servers and their

operation (chapter 2. Tomcat), explains how cookies work and are created (chapter 3.

Cookie). Moreover, it helps to understand the operation of Java Servlet Pages (chapter

4. JSP (Java Servlet Pages)) based on Taglibs (chapter 5 Taglib). Tomcat is a web

server, which contains web sites, and supports the communication with the clients

through HTTP protocol. All programming examples are executed on the Tomcat

Server. Examples based on the BSF Taglib are created, one that uses Jython (chapter

6. Jython Cookie in JSP) and one that lets Open Object Rexx (chapter 7. Rexx Cookie

in JSP with BSF Taglib) written programming codes on Tomcat execute. An example

with JSR-223 Taglib with Rexx is also created (chapter 8. Rexx Cookie in JSP with

JSR-223 Taglib). Jython is python based, the Open Object Rexx is a java-based

scripting language. As examples, the creation, modification, deleting and listing of

cookies have been applied. Cookies are stored on the user computer and store small

amount of information, which makes it possible that the web server recognizes the user

for the second time. JSPs allow to create applications and execute them on a web

server.

The creation of the examples requires the installation of the following software:

1. Java Development Kit (JDK) version 8 or later: [1]
2. Rexx - The 5th version can be found under “files” on this link: [2]
3. BSF4ooRexx: [3]
4. Apache BSF 2.4: [4]
5. Tomcat (installation guide in chapter 2. Tomcat)
6. Jython, version 2.5.3: [5]
7. Apache Ant: [6]
8. BSF Taglib: [7]
9. JSR-223 Taglib: [8]

For the installation the version of the processor has to be taken into consideration. The

use of 64-bit version software is recommended. In case the above software is installed

with different versions, errors occur. Both, the 32-bit and the 64-bit version software

can be executed on the computer (if the computer has 64-bit processor). In this

example the software above must interact with each other and in case of different bit

versions this interaction might not be possible.

4

2. Tomcat

“A server is a computer program or a device that provides functionality for other

programs or devices, called clients.” [9]

Tomcat is a web server, fully written in java language. This makes Tomcat available

with every operation system that supports java.

2.1 Introduction to Tomcat

The actual version of the Tomcat is Tomcat 9.0. There have been many changes

compared to the old versions, therefore it is recommended to search tutorials for the

current version of Tomcat.

Directory structure of Tomcat

Tomcat has the following directory structure:

The “bin” directory contains batch files to start or stop the server. Batch files are script

files to be executed by the command line. Self-written batch files can also be put in this

directory.

The “conf” directory contains configuration files.

The “lib” directory contains java files that are necessary for Tomcat

Figure 1 - Tomcat directory structure

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Client_(computing)

5

The “logs” directory contains the log files.

The “webapps” directory is where the applications, the folders that include JSPs, are

placed.

The “work” contains files, which allow the JSPs to work.

2.2 The Installation of Tomcat

The Tomcat can be downloaded via the following link: [10]

Tomcat can be installed to Windows, Linux or macOS. In case of Windows operating

system the 32-bit/64-bit Windows Service Installer should be chosen. The downloaded

file includes the Tomcat installer, which helps to install Tomcat easily. Each default

setting may be accepted.

Figure 2 - Versions of Tomcat installer

6

The installer offers many configuration options. The HTTP/1.1 Connector Port

defines the port, which allows access to our applications. The default setting is 8080,

which makes Tomcat available via the url: http://localhost:8080/.

The localhost is describing your local computer address. Instead of localhost the IP

address “127.0.0.1” could also be used. Ports are defining the exact destination of

the data communication. It is possible to run more servers on the same computer and

it defines exactly where the request should be forwarded.

The Tomcat is installed in C:\Program Files\Apache Software Foundation.

The server can be started, re-started or stopped, in the computer management window

or via batch files saved in the “bin” directory in Tomcat. The “Computer Management”

can be opened by clicking with right mouse button to “This PC” and choosing the

option “Manage”. With right click on “Apache Tomcat 9.0 Tomcat9”, the server can

be started or stopped. The other possibility to start or stop Tomcat is the use of the

batch files saved in the Tomcat bin directory. The “startup” starts Tomcat, the

“shutdown” stops the server.

Figure 3 - Port settings in Apache Tomcat installer

7

If the server is working, the main site of Tomcat can be accessed in browser with the

following url: http://localhost:8080/

If the JSPs are not working, the reasons are possibly the environment variables.

The environment variables define where different programs are installed. If they

are not defined exactly, Tomcat might not be able to find other programs, on which it

depends.

2.2.1 Environment Variables

The settings of environment variables can be accessed by clicking with right click

to “This PC” and choosing “Properties” option.

Figure 5 - Opening advanced system settings to change the environment variables

Figure 4 - Start, restart or stop the Tomcat in the Computer Management Window

8

Here the advanced system settings should be chosen, which opens the “System

Properties” window. Then the environment variables option should be chosen.

For the operation of Tomcat, the correct settings of the following environment variables

are necessary:

1. CATALINA_HOME: The CATALINE_HOME environment variable is where the

location of Tomcat should be defined.

Figure 6 - The CATALINA_HOME system variable

2. CLASSPATH: In the CLASSPATH environment variable the location of the

following jar (collection of Java classes) files should be given:

a. The servlet-api.jar: This includes the necessary Java classes for a

servlet.

b. The %JYTHON_HOME%\jython.jar is the location of the Java classes of

Jython. In the JYTHON_HOME environment variable should be defined the

location of Jython.

c. The BSF4ooRexx’s location is C:\Program

Files\BSF4ooRexx\bsf4ooRexx-v641-20191126-bin.jar.

d. C:\Program Files\BSF4ooRexx\jni4net.j-0.8.8.0.jar: This a

Jar file allowing the connection between Java and .NET.

e. C:\Program Files\BSF4ooRexx\oorexx.net.jar

f. %BSF_HOME%\build\lib\bsf.jar: The BSF_HOME is another

environment variable, which defines the location of the Apache BSF.

By clicking “edit” the environment variable can be changed.

9

2.2.2 Tomcat Web Application Manager

The Tomcat Web Application Manager is automatically installed with Tomcat. It

allows to deploy, undeploy, or restart a web application. It gives more information about

the server and applications. The manager can be opened via the url:

http://localhost:8080/manager/html.

For security reasons username and password are necessary. To define the username

and password the C:\Program Files\Apache Software Foundation\Tomcat

9.0\conf\ tomcat-users.xml must be edited. The following lines must be included

in the xml:

<role rolename="manager-gui"/>

<user username="user" password="1234" roles="manager-gui"/>

Figure 7 - tomcat-users.xml

After editing the tomcat-users xml, the Tomcat Web Application Manager can be

used with the username: user and password: 1234.

All web applications are listed in the Tomcat Web Application Manager. The path

shows how to reach the applications via browser. The link starts with

http://localhost:8080/ and continues with the path defined for each web application.

The Display Name can be defined or changed in the web.xml file of each project with

the tag display-name:

<display-name>This is how to define a display name</display-name>.

Figure 8 - Defining the Display Name

The Running column shows if the application is available. The Sessions column show

how many sessions exist. At the Commands column there are possibilities to start, stop,

reload, undeploy a web application.

10

Figure 9 - Tomcat Web Application Manager

11

3. Cookie

Cookies can store small amount of data. They help the server to recognize the client.

3.1 Introduction to Cookies

“Cookies are small files, which are stored on a user's computer. They are designed to

hold a modest amount of data specific to a particular client and website, and can be

accessed either by the web server or the client computer. This allows the server to

deliver a page tailored to a particular user, or the page itself can contain some script

which is aware of the data in the cookie and so is able to carry information from one

visit to the website (or related site) to the next.” [11]

 “There are two different types of cookies - session cookies and persistent cookies. If

a cookie does not contain an expiration date, it is considered a session cookie. Session

cookies are stored in memory and never written to disk. When the browser closes, the

cookie is permanently lost from this point on. If the cookie contains an expiration date,

it is considered a persistent cookie. On the date specified in the expiration, the cookie

will be removed from the disk.” [12]

The cookies are saved on the client’s computer. The cookies in Google Chrome can

be seen in the settings. At the settings the advanced settings must be open. After

clicking “privacy and security”, “site settings”, “Cookies and site data”, “See all cookies

and site data” should be chosen. In the search field on the right upper corner, the

cookies can be filtered and by typing “localhost”, all the cookies created by these

program examples can be seen.

By checking the cookies in browser, the proper functioning of the program example

can be confirmed. The path, content, domain, time of creation and expiry can be seen.

12

In case of session cookies in expiry it says: “When the browsing session ends”, for

persistent cookies the exact date of expiration. The cookies can be deleted here easily.

3.2 Functioning of a Cookie

Figure 11 - How are cookies created?

Figure 10 - Cookies in Google Chrome

13

The clients by opening a website for the first time send a request to the server. The

server creates a cookie and sends it to the client. This cookie is saved on the client’s

computer.

If the client already has a cookie from the website, this cookie is sent automatically to

the server. The server sends a confirmation to the user.

3.3 The Cookie object

The constructor is a special method for creating Java object instances. The attributes

given in the constructor must be specified. A cookie object can not be created without

a name and a value. The name can not be an empty string and can not contain white

spaces and after the instantiation can not be changed. In the following examples the

white spaces are not checked.

A cookie object has the following attributes: comment, domain, maxAge, name,

path, secure, value, version. These attributes can be accessed by the getters

and setters.

14

4. JSP (Java Servlet Pages)

 “Java Server Pages (JSP) is a Java standard technology that enables you to write

dynamic, data-driven pages for your Java web applications.” [13]

“A simple JSP page (.jsp) consists of HTML markup embedded with JSP tags. When

the file is processed on the server, the HTML is rendered as the application view, a

web page. The embedded JSP tags will be used to call server-side code and data.”

[13]

There is no need to programmatically compile, because the JSP is compiled in a

special manner: the java code is compiled to a “servlet“ to provide dynamic data. After

changes made in the JSP, the code is compiled automatically to java code. The HTML

remains the static data. This provides a possibility for easy modification, because if a

file is changed, it is enough to refresh the browser; no need to recompile manually or

to restart the server.

5 Taglib

„The JavaServer Pages API allow you to define custom JSP tags that look like HTML

or XML tags and a tag library is a set of user-defined tags that implement custom

behavior.

The Taglib directive declares that your JSP page uses a set of custom tags, identifies

the location of the library, and provides means for identifying the custom tags in your

JSP page.” [14]

In this seminar paper two different Taglibs are used. A Taglib allows to create custom

tags. Between these tags it is possible to use scripting languages.

5.1 JSR-223 Taglib

The JSR-223 Taglib can be downloaded from: [8]

From here the script-taglib.tld and In the lib directory, the script-taglib.jar file should be

downloaded and copied in the project, as in 8.1 File Structure.

In the project the web.xml should be defined as follows:

15

1 <webapp>

2 <jsp-config>

3 <taglib>

4 <taglib-uri></taglib-uri>

5 <taglib-location>/WEB-INF/script-taglib.tld</taglib-location>

6 </taglib>

7 </jsp-config>

8 </webapp>

Figure 12 - web.xml for JSR-223 Taglib

5.2 BSF Taglib

The BSF Taglib can be downloaded with SVN from: [15]

A JAR File must be created of this source code with Apache Ant.

5.2.1 Apache Ant

“Apache Ant is a Java library and command-line tool whose mission is to drive

processes described in build files as targets and extension points dependent upon

each other. The main known usage of Ant is the build of Java applications.” [16]

This is necessary to build jar files from Taglibs and of the BSF in case of Jython.

Apache Ant, version 1.10.7 can be downloaded from: [17]

The environment variables must be set. As ANT_HOME the location of Apache Ant

must be given. Also the Path environment variable the “%ANT_HOME%\bin” must be

given. (How to edit environment variables is in chapter 2.2 The Installation of Tomcat)

First the built.xml must be changed based on [18] :

1 <?xml version="1.0"?>

2 <project name="bsf" default="main">

3 <property name="bin.dir" location="bin"/>

4 <property name="src.dir" location="src"/>

5 <property name="dist.dir" location="dist"/>

6 <property environment="env"/>

7 <property name="servlet.jar" value="${env.JAVA_HOME}/lib/missioncontrol/

8 plugins/javax.servlet_3.0.0.v201112011016.jar"/>

9 <property name="jsp.jar" value="${env.JAVA_HOME}/lib/missioncontrol/

10 plugins/javax.servlet.jsp_2.2.0.v201112011158.jar"/>

16

11 <property name="bsf.jar" value="${env.BSF_HOME}/build/lib/bsf.jar"/>

12 <property name="classpath" value="${servlet.jar}:${bsf.jar}:${jsp.jar}"/>

13 <property name="checkRequirements.pre" value="checkRequirements.pre"/>

14 <property name="examples.pre" value="examples.pre"/>

15 <target name="main">

16 <mkdir dir="${bin.dir}"/>

17 <mkdir dir="${dist.dir}"/>

18 <javac srcdir="${src.dir}" destdir="${bin.dir}"

19 classpath="${classpath}" verbose="yes" source="1.4"/>

20 <jar jarfile="${dist.dir}/bsf-taglib.jar" basedir="${bin.dir}"/>

21 </target>

22 </project>

Figure 13 - built.xml

The location of servlet.jar, jsp.jar, bsf.jar might be different. The BSF

Taglibs should be opened in the terminal. The building can be started with the

command: ANT MAIN. The bsf-taglib.jar is put in the dist directory of the BSF

Taglib. The bsf-taglib.jar should be copied and put in the Tomcat WEB-INF

directory of the project. This jar file contains 2 compiled java classes, the

scriptlet.class and the expression.class.

At the beginning of the JSP the attributes of the taglib directive must be set. These

attributes are the uri and the location, which is the location in file system for the

taglib.tld. If the directory structure is organized as in the examples below it is

always: taglib-location="/WEB-INF/taglib.tld". The prefix is used to define

the taglib tags (prefix="bsf"). In this example it is set to bsf, so each taglib tag

starts with “<bsf: … >”.

5.2.2 Settings for the BSF Taglib in web.xml

For Jython and for Rexx cookie, the BSF Taglib is used. In this case web.xml file of

the project must be changed. In both example this web.xml file is put in the WEB-INF

directory. The jsp-config should be made as follows:

1 <webapp>

2 <jsp-config>

3 <taglib>

4 <taglib-uri>http://jakarta.apache.org/taglibs/bsf-2.0</taglib-uri>

17

5 <taglib-location>/WEB-INF/taglib.tld</taglib-location>

6 </taglib>

7 </jsp-config>

8 </webapp>

Figure 14 - web.xml for BSF Taglib

5.2.3 Tag Library Descriptor (.tld)

To create the taglib.tld the below code must be put in a file and saved as

taglib.tld.

The taglib.tld file is also placed in the WEB-INF directory. This file defines that

scriptlet (line 17) and expression (line 28) tags are forwarded to the taglibs.

The language attribute is set as required (lines 22-23 and lines 33-34), which means

by each starting tag the language must be given.

1 <?xml version="1.0" encoding="ISO-8859-1" ?>

2 <!DOCTYPE taglib

3 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

4 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

5

6 <!-- a tab library descriptor -->

7

8 <taglib>

9

10 <tlibversion>2.0</tlibversion>

11 <jspversion>1.1</jspversion>

12 <shortname>BSF JSP Support</shortname>

13 <uri>http://jakarta.apache.org/taglibs/bsf-2.0</uri>

14 <info> Just testing </info>

15

16 <tag>

17 <name>scriptlet</name>

18 <tagclass>org.apache.taglibs.bsf.scriptlet</tagclass>

19 <bodycontent>tagdependent</bodycontent>

20 <info>Run script</info>

21 <attribute>

22 <name>language</name>

23 <required>true</required>

24 </attribute>

25 </tag>

18

26

27 <tag>

28 <name>expression</name>

29 <tagclass>org.apache.taglibs.bsf.expression</tagclass>

30 <bodycontent>tagdependent</bodycontent>

31 <info>Run expression</info>

32 <attribute>

33 <name>language</name>

34 <required>true</required>

35 </attribute>

36 </tag>

37

38 </taglib>

Figure 15 - Tag Library Descriptor

19

6. Jython Cookie in JSP

The Jython is a scripting language, which allows with Python programming language

to create Java applications. The 2.5.3 version of Jython is recommended. This can be

downloaded from: [19]

6.1 File Structure

The JythonTagLib is created in C:\Program Files\Apache Software

Foundation\Tomcat 9.0\webapps. The bsf.jar for Jython, the bsf-taglib.jar and

the jython.jar are in the WEB-INF\lib directory.

The JythonCookie.jsp is saved in the JythonTagLib.

The JythonCookie.jsp can be accessed in browser via the following link:

http://localhost:8080/JythonTaglib/JythonCookie.jsp

6.2 The BSF

In the bsf for Jython a small change must be done. The JythonEngine.java is

placed in the BSF directory \commons-bsf-master\src\main\java\org\apache

\bsf\engines\jython\JythonEngine.java. In this Java class the PyJavaInstance

object must be replaced by the PyInstance object. This object in the BSF exists only

in the JythonEngine.java. This change must be done, because the BSF had been

written for older versions of Jython.

Figure 16 - Directory structure for Jython

20

In the following code parts of the JythonEngine.java are shown, which included the

PyJavaInstance object.

 ...

26 import org.apache.bsf.BSFDeclaredBean;

27 import org.apache.bsf.BSFException;

28 import org.apache.bsf.BSFManager;

29 import org.apache.bsf.util.BSFEngineImpl;

30 import org.apache.bsf.util.BSFFunctions;

31 import org.python.core.Py;

32 import org.python.core.PyException;

33 import org.python.core.PyInstance;

34 import org.python.core.PyObject;

35 import org.python.core.PySystemState;

36 import org.python.util.InteractiveInterpreter;

 ...

122
 if (result != null && result instanceof PyInstance)

123 result = ((PyInstance)result).__tojava__(Object.class);

124
 return result;

 ...

140 if (result != null && result instanceof PyInstance)

141

 result = ((PyInstance)result).__tojava__(Object.class);

142 return result;

Figure 17 - JythonEngine.java

After changing the JythonEngine.class a jar file should be created with Apache

Ant. Details and download information about Ant can be found in chapter 5.2.1 Apache

Ant.

The jar file of the BSF is created as in case of the Taglibs. In the terminal the

BSF\commons-bsf-master should be opened and a jar file is created with the ANT

ALL command.

The jar file is put in the “dist” directory. It should be copied and put in the

JythonTaglib/WEB-INF/lib directory.

21

6.3 Jython Cookie in JSP with BSF Taglib

The JythonCookie.jsp is divided into different parts upon the functionalities (creating,

modifying, deleting and listing the cookies).

6.3.1. Creating a Cookie

This part includes the necessary settings and imports for the JSP, the HTML header

and the HMTL form and the Jython code for creating a cookie.

1 <%@ page language="java" contentType="text/html"%>

2 <%@ page import="java.text.*,java.util.*" %>

3 <%@ page import="org.apache.bsf.*"%>

4 <%@ taglib uri="/WEB-INF/taglib.tld" prefix="bsf"%>

5

6 <html>

7 <head>

8 <title>JYTHON COOKIE</title>

9 </head>

10 <body>

11 <h3>Create your own Cookie</h3>

12 <form method=POST>

13 <input type="text" name="cookieName" value="">

14 <input type="text" name="cookieValue" value="">

15 <input type="submit" value="OK">

16 </form>

17

18 <bsf:scriptlet language="jython">

19

20 # CREATING COOKIE

21

22 from javax.servlet.http import Cookie

23

24 cookieName = request.getParameter("cookieName") #name of the cookie from request

25 cookieValue = request.getParameter("cookieValue") #value of the cookie from request

26 if cookieName is not None and cookieValue is not None: #checking if parameters are null

27 if len(cookieName) > 0: #checking if name is empty

28 # creating the cookie

29 cookie = Cookie(cookieName, cookieValue)

30 # adding cookie to response

31 response.addCookie(cookie)

32 print >> out, "Cookie created! name: %s value: %s" % (cookie.name, cookie.value)

33 else:

34 print >> out, "Cookie could not be created!"

35 else:

36 print >> out, ""

22

37 </bsf:scriptlet>

38

Figure 18 - JythonCookie.jsp 1/4

Each JSP starts with defining the default language and contentType (line 1). The

necessary imports must be done. In line 4 the taglib-uri (the location of the

taglib.tld) and prefix are defined as follows: <%@ taglib uri="/WEB-

INF/taglib.tld" prefix="bsf"%>.

The user interface is designed in JSPs with HTML code. The title tag in header sets

the title of the tab. The body part contains different elements. The <h3> tag creates a

heading in the browser. (<h1>, <h2> would create a text with bigger text size). Each

HTML starting tag must have a closing tag (</h3>). A form allows to get user input.

The method of the form should be set to POST. In the form the input type=”text”

means, a text field is shown in browser. The name defines the parameter name, the

inputs can be accessed via this parameter name. The input type=”submit” creates

a button. After pushing this button the parameters are sent to the server.

To allow Jython code on JSPs the Taglib starting tag should be used. It contains the

prefix and the language attribute, which is set to “jython”.

Figure 19 - Jython cookie in browser

23

To create a cookie in Jython the Cookie object must be imported with: “from

javax.servlet.http import Cookie”.

From the Jython code, we can get the given parameters by the user with

request.getParameter(“cookieName”) and request.getParameter

(“cookieValue”). It must be checked, if the arguments are null unless a Null Pointer

Exception occurs (line 26). The cookie must have a name, so it needs to be checked

if it is an empty string. (line 27). The cookie object is created in line 29: name and

value must be used in the constructor. In order to save the cookie in the browser of

the client, it must be added to the response (line 31). On success “Cookie created!

name: cookieName and value: cookieValue” is shown in browser. If the creation

of the cookie was not successful, the message “Cookie could not be created” is

shown.

Figure 20 - Jython cookie created!

A session cookie is created in this example, because no “MaxAge” was set. At the

browser settings – all cookies and site data, the created cookies are listed

(see chapter 3.1 Introduction to Cookies). In case of session cookies, the expiry says:

“When the browsing session ends”. This means that if the browser is closed, the

session cookies are automatically deleted.

In order to create a persistent cookie, the maxAge attribute must be added. It changes

the expiry to an exact date, which can be seen in the settings – all cookies and

site data. The browser can be closed, the cookies are stored until the expiry date.

For setting the maxAge attribute an integer value is needed. This integer value defines

the lifetime of the cookie in seconds. For example cookie.setMaxAge(3600) means

that this cookie exists for one hour. The same method is used for deleting a cookie –

look at line 78.

24

6.2.2 Changing a Cookie

The HTML form and the Jython code for changing a cookie is as follows:

39 <h3>Change a Cookie</h3>

40 <form method=POST>

41 <input type="text" name="cookieModifyName" value="">

42 <input type="text" name="cookieModifyValue" value="">

43 <input type="submit" value="OK">

44 </form>

45

46 <bsf:scriptlet language="jython">

47

48 # MODIFYING COOKIE

49

50 cookieName = request.getParameter("cookieModifyName") #cookie name of request

51 if request.cookies is not None and cookieName is not None: #null-check

52 if len(cookieName) > 0: #checking if name is empty

53 for c in request.cookies.tolist(): #finding the cookie, which

54 if c.name == cookieName: #equals to cookieModify

55 c.value = request.getParameter("cookieModifyValue") #setting value

56 response.addCookie(c) #adding cookie to response

57 print >>out, "Cookie changed! Name: %s Value: %s" % (c.name, c.value)

58 print >>out, "Something went wrong. Cookie could not be changed."

59 else:

60 print >>out, ""

61 </bsf:scriptlet>

62

Figure 21 - JythonCookie.jsp 2/4

For changing a cookie, another form for POST request is made (lines 40-44). First on

the parameter, name of the cookie given by the client and on the list of all the cookies

a null-check should be made. The null-check in line 51 is important to avoid the

Null Pointer Exceptions. A cookie must have a name, it can not be empty, so the length

of the cookieName must be bigger than 0 (line 52). With the help of a for cycle it is

checked if any element in the request.cookies.toList() equals cookieName (line

53). If they are the same, a new value is set for the cookie (line 55). By adding the

cookie with the new value to the response, the response is sent to the client (line 56)

and in browser success message is shown (line 57). If something went wrong, the

message “Something went wrong. Cookie could not be changed” is shown.

25

Figure 22 - Jython cookie changed!

6.2.3 Deleting a Cookie

In the following, a HTML and a Jython code for deleting a cookie is shown.

63 <h3>Delete a Cookie</h3>

64 <form method=POST>

65 <input type="text" name="cookieDelete" value="">

66 <input type="submit" value="DELETE">

67 </form>

68

69 <bsf:scriptlet language="jython">

70

71 # DELETING COOKIE

72

73 cookieName = request.getParameter("cookieDelete") #name of the cookie

74 if request.cookies is not None and cookieName is not None: #check if parameters are null

75 if len(cookieName) > 0: #checking if name is empty

76 for c in request.cookies.tolist(): #finding the cookie, which

77 if c.name == cookieName: #equals to cookieDelete

78 c.maxAge = 0 #setting max age to 0

79 response.addCookie(c) #adding cookie to response

80 print >>out, "Cookie, %s has been deleted!" % c.name

81 print >>out, "Something went wrong. Cookie could not be deleted."

82 else:

83 print >>out, ""

84 </bsf:scriptlet>

Figure 23 - JythonCookie.jsp 3/4

In the form for deleting a cookie, only the name is necessary. The request.cookies,

which contains all cookies from request, and the name of the cookie must be checked

if null. The name also needs to be checked if empty, with len(cookieName) > 0. The

same way as by changing a cookie, the for cycle is used to find the element, which

has the same name as the client given parameter (lines 76-77). The attribute maxAge

26

can be used to define an expiry date. To delete a cookie the maxAge attribute is set to

0 (line 78). By adding this modified cookie to the response, the client’s browser deletes

it, because of the expiry date (line 79). Success or error message is shown in browser

(line 80 or line 81).

6.2.4 Show the List of Cookies

The following code is the last part of the JythonCookie.jsp. It shows the list of the

existing cookies in the browser.

85

86 <h3>List of all Cookies</h3>

87 <bsf:scriptlet language="jython">

88

89 # LIST COOKIES

90

91 str = ""

92 if request.cookies is not None:
#check if cookies array is
null

93
 for c in request.cookies.tolist():

#create a string from all
items

94 str += "Name: %s - Value: %s
" % (c.name, c.value)

95 print >>out, str

96 </bsf:scriptlet>

97

98 </body>

99 </html>

Figure 24 - JythonCookie.jsp 4/4

In line 86 a heading is created. The request contains the list of the all cookies

created, no client given parameter is necessary, so no HTML is needed. The null-check

of the request.cookies, is important (line 92). An empty string is created in line 91.

To this string during the for cycle the name and value of the cookie is added. The

 is a HTML tag, that makes sure each cookie is shown in a new line in the

browser. This string is shown in browser by print >>out, str. This is the last part

of the JythonCookie.jsp, so the HTML tags should be closed (lines 98-99).

27

7. Rexx Cookie in JSP with BSF Taglib

In this example the Apache BSF Taglib is used with the Rexx scripting language to

create an application.

7.1 File Structure

The project, JSPTagLib is created in C:\Program Files\Apache Software

Foundation\Tomcat 9.0\webapps. The BSF4ooRexx and the bsf-taglib are in the

WEB-INF\lib directory.

The JSP files are saved in the JSPTagLib.

The RexxTaglib.jsp can be accessed in browser via the following link:

http://localhost:8080/JSPTagLib/RexxTaglib.jsp

7.2 RexxTaglib.jsp

The JSP is divided into different parts upon the functionalities (creating, modifying,

deleting and listing the cookies).

7.2.1. Creating a Cookie

This part includes the necessary settings and imports for the JSP, the HTML header

and the HMTL form and the Rexx code for creating a cookie.

Figure 25 - File structure for Rexx Cookie with BSF Taglib

28

1 <%@ page language="java" contentType="text/html"%>

2 <%@ page import="java.text.*,java.util.*" %>

3 <%@ page import="org.apache.bsf.*"%>

4 <%@ taglib uri="/WEB-INF/taglib.tld" prefix="bsf"%>

5
6 <html>

7 <head>

8 <title>TAGLIB TO ENABLE REXX</title>

9 </head>

10 <body>

11 <h3>Create your own Cookie</h3>

12 <form method=POST>

13 <input type="text" name="cookieName" value="">

14 <input type="text" name="cookieValue" value="">

15 <input type="submit" value="OK">

16 </form>

17
18 <bsf:scriptlet language="rexx">

19
20 -- The arguments cannot be easily taken over in taglibs with the command:

21 -- use arg out, request, response

22
23 --GET ARGUMENTS

24 out = bsf.lookupBean('out') -- get the out object

25 response = bsf.lookupBean('response') -- get the response object

26 request = bsf.lookupBean('request') -- get the request object

27
28 --CREATE COOKIE

29 str = "" -- creates an empty string

30 cookieName = request~getParameter("cookieName") -- name of the cookie from request

31 cookieValue = request~getParameter("cookieValue") -- value of the cookie from request

32 if (cookieName \= .nil & cookieValue \= .nil) then -- checking if parameters are null

33 Do

34 if cookieName <> "" then -- checking if name is empty

35 Do

36 -- creating the cookie with bsf

37 cookie = .bsf~new("javax.servlet.http.Cookie", cookieName, cookieValue)

38 --adding cookie to response

39 response~addCookie(cookie)

40 str = "Cookie successfully created! name: " cookie~name "value: " cookie~value

41 End

42
 else str = "Cookie could not be created!"

43 End

44 out~println(str) -- shows the string in browser

45
46 ::requires BSF.cls -- loads BSF4ooRexx support

47

48 </bsf:scriptlet>

29

Figure 26 - RexxTaglib.jsp 1/4

The language of the JSP must be set to Java and all necessary imports need to be

done (lines 1-3). The location of the taglib.tld and the prefix is defined in line

4.

After the necessary imports the first part of the HTML is written. Using the <form

method=POST> we can define a POST request, with the parameters cookieName and

cookieValue.

To enable the execution of Rexx code on Tomcat, the Taglib is necessary. At the

beginning of the Rexx code, in the Taglib opening tag the language must be set to

rexx. (line 18). At the end of the Rexx code the Taglib closing tag is put (line 48).

The execution of a Rexx program starts by checking the requirements. In this case in

line 46, the requirement is the BSF4ooRexx (::REQUIRES BSF.CLS). This means that

at first the BSF4ooRexx is imported and this class can be used for creating Java objects

in Rexx. The execution of the Rexx code goes line by line from the 1st to the last line,

unless another instruction is given.

Usually Rexx can take over arguments from java with the statement “use arg”. In case

of Taglibs, this command does not work and the bsf.lookupBean(“out”) command

should be used (lines 24-26). The out argument is the JSPWriter, which allows to

show information in the browser. The request and response allow the communication

between the server and client.

In line 29 an empty String is declared. If the server does not have any specific message

for the client this empty String is shown.

The request object in the HTML form defined parameters, cookieName and

cookieValue (lines 13-14). The name of the cookie given in browser by the client can

be accessed by request~getParameter(“cookieName”), and the value with

request~getParameter(“cookieValue”).

It can not be guaranteed that the client given parameters are not null or empty. For

controlling the null or empty value of an object, more steps are necessary. First of all,

it has to be checked if the cookieName or cookieValue are .nil (line 32). Every time

the page is reloaded, and no arguments are given, these parameters are empty. A

30

cookie can take an empty string as value, but the name can not be empty (line 34). If

the name is empty, the Rexx code shows the message in browser: “Cookie could

not be created” (line 42) To create a cookie object with Rexx, the BSF4ooRexx

needs to be used. To create a Java object in Rexx the fully qualified name of the object

must be declared (“javax.servlet.http.Cookie”) and the constructor (name, value)

must be used for creating the object (line 37). The cookie must be sent to the client by

adding it to the response (line 39). If all these happened successfully the response is

shown in browser: “Cookie successfully created! Name: name value: value”.

7.2.2 Changing a Cookie

The HTML form and the Rexx code for changing a cookie is as follows:

49

50 <h3>Change a Cookie</h3>

51 <form method=POST>

52 <input type="text" name="cookieModifyName" value="">

53 <input type="text" name="cookieModifyValue" value="">

54 <input type="submit" value="OK">

55 </form>

56

57 <bsf:scriptlet language="rexx">

58

59 --GET ARGUMENTS

60 out = bsf.lookupBean('out') -- get the out object

61 response = bsf.lookupBean('response') -- get the response object

62 request = bsf.lookupBean('request') -- get the request object

63

64 --CHANGE A COOKIE

65 str = "" -- creates an empty string

66 cookieName = request~getParameter("cookieModifyName") --get cookie name from request

67 if (request~COOKIES \= .nil & cookieName \= .nil) then do -- null check

68 if cookieName <> "" then do --checking if name is empty

69 listCookies = request~COOKIES --get cookies from request

70 do c over listCookies --finding the cookie, which

71 if c~name == cookieName then --equals to cookieModify

72 Do

73 c~value(request~getParameter("cookieModifyValue")) --set value

74 response~addCookie(c) --adding cookie to response

75 str = "Cookie changed! Name: " c~name " Value: " c~value

76 End

77 else str = "Something went wrong. Cookie could not be changed."

78 End

79 End

31

80 End

81 out~println(str)

82

83 ::requires BSF.cls -- loads BSF4ooRexx support

84

85 </bsf:scriptlet>

86

Figure 27 - RexxTaglib.jsp 2/4

A HTML form is created to change the values of cookies (lines 50-55).

Another Taglib scriptlet is started and the language is set to rexx. (line 57). The

arguments are retrieved (lines 59-62) with the bsf.lookup method as in case of

creating a cookie.

For identifying a cookie its name is used. Two cookies can not exist if the name, path

and domain are the same. All the cookies in this example are created with the same

path and domain, so only the name needs to be controlled. This allows changing the

cookie and not creating a new one. The request contains all cookies as array list. In

line 67 it must be checked if this list and the name of the cookie are .nil. If the name

of the cookie to be changed is not empty (line 68), the listCookies - containing all

cookies sent via the request - is created. The block (lines 72-76) starting with “do c

over listCookies” instruction, controls each element of the listCookies list if

the name of the cookie equals the name given by the client. In case of being equal the

value of this cookie is changed to the client given value (line 10). After that the cookie

is added to the response. The message is shown in browser: “Cookie changed!

Name: name Value: value”.

7.2.3 Deleting a Cookie

In the following, a HTML and a Rexx code for deleting a cookie is shown.

87 <h3>Delete a Cookie</h3>

88 <form method=POST>

89 <input type="text" name="cookieDelete" value="">

90

 <input type="submit" value="DELETE">

32

91
 </form>

92

93 <bsf:scriptlet language="rexx">

94

95 --GET ARGUMENTS

96 out = bsf.lookupBean('out') -- get the out object

97 response = bsf.lookupBean('response') -- get the response object

98 request = bsf.lookupBean('request') -- get the request object

99

100 --DELETE A COOKIE

101 cookieName = request~getParameter("cookieDelete") --name of the cookie from request

102 str = ""

103 if (request~COOKIES \= .nil & cookieName \= .nil) then do --null-check

104 if cookieName <> "" then do --checking if name is empty

105 listCookies = request~COOKIES --getting cookies from request

106 do c over listCookies

107 if c~name == cookieName then --finding the cookie, which

108 do --equals to cookieDelete

109 c~MaxAge = 0 --setting max age to 0

110 response~addCookie(c) --adding cookie to response

111 str = "Cookie, " c~name "has been deleted!"

112 End

113 else str = "Something went wrong. Cookie could not be deleted."

114 End

115 End

116 End

117 out~println(str) -- shows the string in browser

118

119 ::requires BSF.cls -- loads BSF4ooRexx support

120

121 </bsf:scriptlet>

Figure 28 - RexxTaglib.jsp 3/4

For the request to delete a cookie an individual HTML form is created with the

cookieDelete parameter.

The request response and out object are retrieved by the Rexx side (line 95-99).

The method to delete a cookie is to the one modifying it: if any of the cookies from the

list has the same name as the client given parameter, it must be changed. In case of

changing a cookie, a new value is set, but to delete the maxAge attribute must be

changed to 0 (line 109). In case of success the message “Cookie, cookieName has

been deleted!” is shown in browser.

33

7.2.4 Show the List of Cookies

The following code is the last part of the RexxTaglib.jsp. It shows the list of the

existing cookies in the browser.

122

123 <h3>List of all Cookies</h3>

124

125 <bsf:scriptlet language="rexx">

126

127 --GET ARGUMENTS

128 out = bsf.lookupBean('out') -- get the out object

129 request = bsf.lookupBean('request') -- get the request object

130

131 -- SHOW ALL COOKIES

132 str = ""

133 if request~COOKIES \= .nil then do -- null check

134 listCookies = request~COOKIES

135 do c over listCookies --creating a string from all items

136 str = str "Name: " c~name "- Value: " c~value "
"

137 end

138 end

139 out~println(str) -- shows the string in browser

140

141 ::requires BSF.cls -- loads BSF4ooRexx support

142

143 </bsf:scriptlet>

144 </body>

145 </html>

Figure 29 - RexxTaglib.jsp 4/4

For creating a list of all cookies, the arguments out and request are retrieved and

the null-check on the cookie list from the client’s request is made (lines 133-134). A

string (str) of all elements of the list is created (lines 135-137). This string value contains

the names and values of the cookies. The HTML tag “
” makes sure that in the

browser each cookie is placed in a new line. This string is shown in browser by the

command “out~println(str)” (line 139).

34

Figure 30 - Rexx cookie created!

Figure 31 - Rexx cookie modified!

35

8. Rexx Cookie in JSP with JSR-223 Taglib

In the following example the JSR-223 Taglib is used with Rexx to create an application

that creates, changes, deletes and shows cookies.

8.1 File Structure

The project, JSPJSRTagLib should be placed in the webapps directory of Tomcat. The

file structure is same as in case of the BSF Taglib (7.1 File Structure). The necessary

jar files are put in the WEB-INF/lib directory. In case of the JSR-223 it is the jar file of

the script-taglib and the bsf4ooRexx. The Tag Library Descriptor, the script-

taglib.tld and the web.xml are in the WEB-INF directory. The RexxJSRTaglib.jsp

is in the JSPJSRTagLib.

8.2 RexxJSRTaglib.jsp

In this example the JSR-223 Taglib is used to create, change, delete cookie and get a

list of the cookies.

8.2.1 Creating a Cookie

First the language of the JSP should be defined and the imports should be done. The

Taglib is put in the WEB-INF directory. As taglib-uri, the /WEB-INF/script-

taglib.tld should be given.

1 <%@ page language="java" contentType="text/html"%>

2 <%@ page import="java.text.*,java.util.*" %>

3 <%@ page import="org.apache.bsf.*"%>

4 <%@ taglib uri="/WEB-INF/script-taglib.tld" prefix="bsf"%>

Figure 32 - File structure for Rexx Cookie with JSR-223 Taglib

36

5
6 <html>

7 <head>

8 <title>ENABLE REXX WITH JSR-223 TAGLIB</title>

9 </head>

10 <body>

11 <h3>Create your own Cookie</h3>

12 <form method=POST>

13 <input type="text" name="cookieName" value="">

14 <input type="text" name="cookieValue" value="">

15 <input type="submit" value="OK">

16 </form>

17
18 <bsf:scriptlet language="rexx">

19 --CREATE COOKIE

20 /* @get(out response request)*/ --GET ARGUMENTS

21

22 str = "" -- creates an empty string

23 cookieName = request~getParameter("cookieName") -- name of the cookie from request

24 cookieValue = request~getParameter("cookieValue") -- value of the cookie

25 if (cookieName \= .nil & cookieValue \= .nil) then -- checking if parameters are null

26 do

27 if cookieName <> "" then -- checking if name is empty

28 do

29 -- creating the cookie with bsf

30 cookie = .bsf~new("javax.servlet.http.Cookie", cookieName, cookieValue)

31 --adding cookie to response

32 response~addCookie(cookie)

33 str = "Cookie created! name: " cookie~name "value: " cookie~value

34 end

35
 else str = "Cookie could not be created!"

36 end

37 out~println(str) -- shows the string in browser

38 ::requires BSF.cls

39

40 </bsf:scriptlet>

Figure 33 - RexxJSRTaglib.jsp 1/4

In the HTML part, we define a POST request, with the parameters cookieName and

cookieValue.

In the Taglib opening tag the language attribute must be set to rexx. (line 18). In

difference to the BSF Taglib, with the JSR-223 the arguments are get via an

37

annotation. An annotation starts with /*@ and ends with */. The annotation, /*

@get(out response request)*/ in line 20 is important, because it gets the

arguments from the JSP. Without this, the objects, out, request and response would

not be accessible from the Rexx code.

The Rexx code is exact the same as in case of the BSF Taglib (see chapter 7.2.1.

Creating a Cookie). The parameters are get from the request object (lines 23-24).

Null-check and the length of the cookieName is checked. (lines 25-27). The cookie is

created and added to the response. The closing tag of the JSR-223 Taglib is

necessary to separate the Rexx code from the HTML.

8.2.2 Changing a Cookie

The HTML and the Rexx code for changing a cookie is as follows:

41 <h3>Change a Cookie</h3>

42 <form method=POST>

43 <input type="text" name="cookieModifyName" value="">

44 <input type="text" name="cookieModifyValue" value="">

45 <input type="submit" value="OK">

46 </form>

47

48 <bsf:scriptlet language="rexx">

49

50 --CHANGE A COOKIE

51 --GET ARGUMENTS

52 /* @get(out response request)*/

53 str = "" -- creates an empty string

54 cookieName = request~getParameter("cookieModifyName") --get cookie name from request

55 if (request~COOKIES \= .nil & cookieName \= .nil) then do --null - check

56 if cookieName <> "" then do --checking if name is empty

57 listCookies = request~COOKIES --getting cookies from request

58 do c over listCookies --finding the cookie, which

59 if c~name == cookieName then --equals to cookieModify

60 do

61 c~value(request~getParameter("cookieModifyValue")) --setting value

62 response~addCookie(c) --adding cookie to response

63 str = "Cookie changed! Name: " c~name " Value: " c~value

64 end

65 else str "Something went wrong. Cookie could not be changed."

66 end

67 end

68 end

69 out~println(str)

38

70

71 ::requires BSF.cls -- loads BSF4ooRexx support

72

73 </bsf:scriptlet>

Figure 34 - RexxJSRTaglib.jsp 2/4

With HTML a form for POST request is made. The cookieModifyName and

cookieModifyValue parameters are given by the client (lines 41-46).

The objects, out, request and response are retrieved by the Rexx code via the

annotation, /* @get(out response request)*/ .

The request contains all cookies. It must be checked if the list of the cookies or the

cookieName is null. If the name of the cookie to be changed is not empty, the

listCookies - containing all cookies sent via the request - is created. The block (lines

58-64) starting with do c over listCookies instruction, checks the elements of the

listCookies, if the name of the cookie element equals the name given by the client.

In case of being equal the value of this cookie is changed to the value given by the

client (line 61). After that the cookie is added to the response. The rexxCode returns

with the response: “Cookie changed! Name: name Value: value”.

8.2.3 Deleting a Cookie

In the following HTML and Rexx code, it is shown, how to delete an existing cookie:

74 <h3>Delete a Cookie</h3>

75 <form method=POST>

76 <input type="text" name="cookieDelete" value="">

77

 <input type="submit" value="DELETE">

78
 </form>

79

80 <bsf:scriptlet language="rexx">

81 --DELETE A COOKIE

82 -- GET ARGUMENTS

83 /* @get(out response request)*/

84 cookieName = request~getParameter("cookieDelete") --name of the cookie from request

85 str = ""

86
if (request~COOKIES \= .nil & cookieName \= .nil) then
do

--checking if parameters are.nil

87 if cookieName <> "" then do --checking if name is empty

88 listCookies = request~COOKIES --getting cookies from request

89 do c over listCookies

90 if c~name == cookieName then --finding the cookie, which

39

91 do --equals to cookieDelete

92 c~MaxAge = 0 --setting max age to 0

93 response~addCookie(c) --adding cookie to response

94 str = "Cookie, " c~name "has been deleted!"

95 end

96 else str = "Something went wrong. Cookie could not be deleted."

97 end

98 end

99 end

100 out~println(str) -- shows the string in browser

101

102 ::requires BSF.cls -- loads BSF4ooRexx support

103

104 </bsf:scriptlet>

Figure 35 - RexxJSRTaglib.jsp 3/4

The HTML form for deleting a cookie is created in lines 74-78. The objects, out,

request and response are retrieved by the annotation, /* @get(out response

request)*/.The code is the same as in case of the BSF Taglib, see chapter 7.2.3

Deleting a Cookie. The null-check is made. The cookie to be deleted can be found in

the list of the cookies by checking each element of the listCookies. The maxAge

attribute of the Cookie is set to 0.

8.2.4 Show the List of Cookies

The following code is the last part of the RexxJSRTaglib.jsp. In this code the existing

cookies are shown in the browser.

105 <h3>List of all Cookies</h3>

106

107 <bsf:scriptlet language="rexx">

108

109 /* @get(out request)*/

110 -- SHOW ALL COOKIES

111 str = ""

112 if request~COOKIES \= .nil then do --checking if cookies array is null

113 listCookies = request~COOKIES

114 do c over listCookies --creating a string from all items

115 str = str "Name: " c~name "- Value: " c~value "
"

116 end

117 end

118 out~println(str) -- shows the string in browser

119

120 ::requires BSF.cls -- loads BSF4ooRexx support

40

121

122 </bsf:scriptlet>

123 </body>

124 </html>

Figure 36 - RexxJSRTaglib.jsp 4/4

For creating a list of all cookies, the arguments are retrieved with the annotation and

the null-check of the cookie list made (line 112). A string (str) of all elements of the

list is created. This string value contains the names and values of the cookies. The

HTML tag,
 makes sure that in the browser each cookie is placed in a new line.

41

9. Conclusion

JSPs are techniques to create web content on Tomcat servers. Because of the

automated compilation and easy structure of JSPs, they are recommended for

beginners. Taglibs allow to create web application with scripting languages, without

the knowledge of Java. Jython and Rexx are scripting languages, which are easier to

learn as Java. To configure the Tomcat server with Taglibs takes a few hours, but the

creation of complex web application goes much faster with scripting languages.

The codes above are just examples, there are many different scripting languages to

allow the execution on Tomcat servers. In each case, it is important to find the right

version of the Taglibs and the necessary BSF. This seminar paper proves that with the

usage of Taglibs, the execution of scripting languages can be allowed on Tomcat. Not

only Jython and Rexx can be used for creating applications on Tomcat, but also other

scripting languages supported by Taglibs and BSFs.

42

Literaturverzeichnis

[1] „JDK 8 download,“ 23 12 2019. [Online]. Available:

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html.

[Zugriff am 23 12 2019].

[2] „Rexx 5 download,“ 23 12 2019. [Online]. Available:

https://sourceforge.net/projects/oorexx/files/oorexx/. [Zugriff am 23 12 2019].

[3] „BSF4ooRexx download,“ 23 12 2019. [Online]. Available:

https://sourceforge.net/projects/bsf4oorexx/. [Zugriff am 23 12 2019].

[4] „Apache BSF download,“ 23 12 2019. [Online]. Available:

https://github.com/apache/commons-bsf. [Zugriff am 23 12 2019].

[5] „Jython download,“ 23 12 2019. [Online]. Available:

https://search.maven.org/search?q=g:org.python%20AND%20a:jython-installer&core=gav.

[Zugriff am 23 12 2019].

[6] „Apache Ant download,“ 23 12 2019. [Online]. Available: https://ant.apache.org/. [Zugriff am

23 12 2019].

[7] „BSF Taglib download,“ 23 12 2019. [Online]. Available:

http://svn.apache.org/repos/asf/jakarta/taglibs/deprecated/bsf/trunk/. [Zugriff am 23 12

2019].

[8] „JSR-223 download,“ 23 12 2019. [Online]. Available:

https://www.dropbox.com/sh/068uqxmj83dle56/AACdMtvMk2HC8HVHkJr7TJgZa?dl=0.

[Zugriff am 23 12 2019].

[9] „Wikipedia - Server (computing),“ 17 12 2019. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Server_(computing)&oldid=929416573. [Zugriff am

17 12 2019].

[10] „Tomcat download,“ 17 12 2019. [Online]. Available: https://tomcat.apache.org/download-

90.cgi. [Zugriff am 17 12 2019].

[11] "What are cookies," 23 12 2019. [Online]. Available: http://www.whatarecookies.com/.

[Accessed 23 12 2019].

[12] „Cisco,“ 1 10 2019. [Online]. Available:

https://www.cisco.com/c/en/us/support/docs/security/web-security-appliance/117925-

technote-csc-00.html.

[13] "Java World," 1 10 2019. [Online]. Available:

https://www.javaworld.com/article/3336161/what-is-jsp-introduction-to-javaserver-

pages.html.

43

[14] „Tutorialspoint,“ 23 12 2019. [Online]. Available:

https://www.tutorialspoint.com/jsp/taglib_directive.htm. [Zugriff am 23 12 2019].

[15] „BSF Taglib download,“ 17 12 2019. [Online]. Available:

http://svn.apache.org/repos/asf/jakarta/taglibs/deprecated/bsf/trunk/. [Zugriff am 17 12

2019].

[16] „Apache Ant,“ 05 12 2019. [Online]. Available: https://ant.apache.org/.

[17] „Apache Ant download,“ 17 12 2019. [Online]. Available:

https://ant.apache.org/bindownload.cgi.. [Zugriff am 17 12 2019].

[18] S. Ryabenkiy, Java Web Scripting und Apache Tomcat, 2010.

[19] „Jython download,“ 17 12 2019. [Online]. Available:

https://search.maven.org/search?q=g:org.python%20AND%20a:jython-installer&core=gav.

[Zugriff am 17 12 2019].

[20] "Oracle Docs," 1 10 2019. [Online]. Available:

https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServlet.html.

[21] "Geeks for geeks," 1 10 2019. [Online]. Available: https://www.geeksforgeeks.org/java-class-

file/.

[22] "Oracle Docs," 1 10 2019. [Online]. Available:

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html.

[23] "Geeks for geeks," 1 10 2019. [Online]. Available: https://www.geeksforgeeks.org/difference-

between-servlet-and-jsp/.

[24] „Oracle Docs,“ 1 10 2019. [Online]. Available:

https://docs.oracle.com/javaee/5/tutorial/doc/bnafe.html.

[25] „Codesjava,“ 2019 12 04. [Online]. Available: https://codesjava.com/jsp-taglib-directive.

[26] "Apache," 1 10 2019. [Online]. Available: https://commons.apache.org/proper/commons-

bsf/manual.html.

[27] J. 8. download, „1,“ 23 12 2019. [Online]. [Zugriff am 23 12 2019].

[28] J. J. download, „[1],“ 23 12 2019. [Online]. Available:

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html.

[Zugriff am 23 12 2019].

