
Apache 2.0 vs GPL 3.0

Institute for Information Systems and Society

Betreuer: Prof. Dr. Rony G. Flatscher

Verfasser: Hong Gu

19. Juni 2019

Table of Contents

1 Introduction...3

2 FOSS..4

2.1 Free Software...6

2.2 Open Source...8

3 Software License..10

3.1 What is a Software License..10

3.2 What is not a Software License..10

4 Apache vs. GPL..11

4.1 Assessment of GPL..11

4.1.1 Copyleft..11

4.1.2 GPLv3..12

4.1.3 LGPL..14

4.1.4 A Closer Look at the Anti-DRM Section...15

4.1.5 Software Patents..17

4.2 Assessment of Apache License...19

4.2.1 Permissive License..19

4.2.2 Apache License 2.0..19

4.3 Comparision of the two Licenses...22

4.3.1 Rise of Open Source and Apache-Style licensing.............................23

4.3.2 GPL losing Popularity...24

4.3.3 Most popular Licenses in 2018..25

4.3.4 Choosing a License for Commercialization.......................................29

5 Conclusion..32

6 References..33

7 Figures..36

2

1 Introduction

Free and open source software is an important topic. More and more

enterprises use open source software and also try to earn money with it.

Even the US Government is deeply involved in FOSS. Some people

have tried to make FOSS more popular in order to assists third-world

countries. It is reckoned that because of the advantages of FOSS the

movement will continue to flourish.

There are two very important FOSS licenses. One is the GNU General

Public License. It was drafted by the Free Software Foundation. It‘s very

difficult to determine the number of projects that are licensed under GPL

however it‘s estimated that the number is very high. The most recent

version of GPL is Version 3. It comes with various changes such as

improving compatibility with other licenses. However, the two most

important changes are in regards to the Digital Rights Management and

software patents. (Asay, 2008)

On the other hand, we have the Apache Software License.

It‘s commonly used and a permissive open source software license. It‘s

wordier than other permissive licenses such as the MIT License. Apache

License it also very important and used by projects such as Apache

HTTP server, which is being utilized by over 50% of the web servers in

the world. Furthermore, it‘s a very well developed license that does not

rely on interpretations from its community in order to foresee potential

legal issues. (Sinclair, 2010)

This paper aims to give an overview of these two licenses. Firstly, it does

so by explaining basic terms in the FOSS movement. Then both licenses

are being assessed in order to figure out a popularity trend and which

license may have a brighter future. Lastly, both licenses will be

compared. The reader will read about which license is currently

dominating and who seems to prefer what license.

3

2 FOSS

The term FOSS is by now well known by the people working in software

development. People who are interested in a programming career have

surely heard this term or might have even used open source software.

However, developers preferred proprietary software, since the owners of

software were able to make a profit from their programs.

Free and open source software are two different terms with different

meanings. (Balakrishnan, 2018)

Free and Open Source Software is highly relevant when it comes to the

development of Information Systems. One needs to conscientiously

consider the conditions of the licenses in order to be able to comply with

them.

Free and Open Source software is commonly utilized by individuals and

groups. It is seen as a way to develop a software product by the FOSS

community and companies that produce proprietary software. Even

proprietary software may rely on FOSS code. One methodology to

developing software is to include FOSS source code to ones own

software and therefore improving its quality and extending its

functionality.

However, using FOSS code means that one has to comply with the

conditions of the license under which the code has been released. Its

highly important to consider complication in compliance scenarios as the

licensed FOSS code can have an influence on the whole developed

information system.

For example, if one uses the code from the GPL license, this license

would obligate the developer to release his whole software under the

GPL. Additionally, compliance can be a very complex issue. License

have varying conditions and restrictions put on the distribution of licensed

code. Some users may not want to comply with the restrictions of a

4

certain license. Wishing to combine different licenses and changing them

throughout a software development project can cause incompatibilities.

(Gangadharan et al., 2012)

FOSS enables developers to reuse third-party code in order to produce

new software. Legally speaking the new program will be a derivative

work. Additionally, their modification and distribution are regulated by

copyright law. As a result, FOSS licenses have been drafted to

encourage derivative software products. However, occasionally it’s not

possible to release software with Foss software components under the

same license. This stops developers from reusing these components.

Thanks to FOSS it’s is possible for different programs to interact with

each other in order to fulfill a function for users. For example, the Linux

based distribution Debian consists of over 18000 different software

packages. (Software package is software that is independent of other

programs and can be installed in a computer system. They can be

applications or distinct software libraries such as libtiff) FOSS software

packages reuse quite commonly software packages for other sources.

Consequently, we can view software packages as software components.

A FOSS application typically consists of multiple components that have

an interactive relationship with each other. So, FOSS software is often

created through the reuse of other FOSS code. However, before a

component is reused, licensing conditions have to be taken into

consideration. Developers who want to make use of FOSS code should

learn the licensing terms of the license under which the desired FOSS

code has been released. It’s important if the code can be used and how

so. Also, it should be kept in mind that some incompatibility issues may

arise. (German et al, 2009)

5

2.1 Free Software

Free refers to freedom in using the software. Free software defines four

different freedoms:

The program can be used for any possible purpose. Any restriction such

as trial period, or allowing the use for only special endeavors leads to the

program becoming non-free.

Secondly, the second freedom allows others to study the source code

and modify it to fit their own requirements. If restrictions are put on a

program that will hinder understanding the source code or it’s

modification as well as their use or by adding the requirement of buying

additional special license makes the software proprietary and therefore

not free.

The third freedom states that copies can be distributed at free will for no

cost. If it is legally prohibited to give the software to someone else the

program is not free software.

Finally, the fourth freedom says that you can improve the program freely

and you can release your version of the free software for the public. This

way the community can benefit from it.

(Free Software Foundation Europe, 2019)

Due to these freedoms, the users are able to control the software and

whatever function it serves for them. If the program is not controlled by

the user the software is non-free or proprietary. Non-free software is in

control of the user and the program is controlled by the developer, thus

making the program a tool to exercise power over others.

If all four freedoms are provided we can call the software free. The GNU

foundation considers all non-free software as unethical. In all situations,

the four freedoms also have to be valid for software that has to be used

in conjunction. For example, if a program A also starts a program B to

6

deal with something program B must also be free as program A requires

it. However, if A is modified in such a way that it can operate

independently from B, program B doesn’t need to be free anymore.

It has to be mentioned, that free software does not mean it has to be

non-commercial. Free programs can be commercially used, developed

and distributed. Companies being involved in the development of free

software is not uncommon these days. These free software are quite

important. Regardless of how you have obtained the software either free

of charge or by paying for it, you must be able to have the freedom to

change, sell and copy this program.

Free software has to grant these freedoms to all users that acquire the

software if the user has agreed to the conditions of the license under

which the program is released. Discriminating users or a group by saying

that they have to pay for the program renders the software non-free.

(Free Software Foundation, 2019)

7

2.2 Open Source

Open source means that people can change and distribute the source

code as it is publicly available. The term came from software

development. It is used to describe a method to develop computer

programs. Nowadays open source covers a lot of values. Open source

programs thrive for open exchange, joint participation, transparency and

community-driven development.

Open source software is when anyone can take a look at the source

code and change it.

(„What is opensource“, n. d.)

Open source does not only imply that there is access to the source code.

It also means there are terms in regards to distributing software under

open software licenses. Following criteria have to be fulfilled:

There must be free redistribution. It shouldn’t be possible to prevent a

party from allocating the software as a part of an aggregate software

distribution which consists of multiple programs. There should be no fee

for such a transaction.

The programs must come with the source code and has to also allow

distribution of that source code. If source code is not distributed with the

program, there must be an easy way to retrieve the source code for

example through downloading it from the internet without any cost.

Furthermore, the code has to be in a state where it is readable. Code that

is tampered on purpose so difficulties arise in reading it is not permitted.

Thirdly it must allow modification to it as well as derivations. The new

software must be distributed for the same requirements as the original

software. (Opensource.org, 2007)

8

Fourthly a license may forbid the distribution of a modified version of

source code only if the distribution of patch files together with the source

code is allowed. Derived software may need a different name or version

number that distinguishes it from the original software.

Fifthly, it is not allowed to discriminate against people or groups.

Furthermore, the license is not allowed to prohibit others from utilizing the

program in a certain area. For example, it’s not allowed to stop people

from using the program in a business.

Additionally, a license must not be valid for only a product. All parties that

receive a distribution of a program licensed under open source should

receive the rights listed under the Apache Software License without

having to depend on another license.

Moreover, the license is not allowed to restrict other software that is

being distributed together with the software under an open-source

license. Finally, the license has to be technology neutral.

(Opensource.org, 2007)

9

3 Software License

3.1 What is a Software License

If there is no contract there will be copyright. Copyright endures for 50

years for computer software after the author has died. Copyright allows

us to determine who is allowed to make copies of the software and who

may modify and publish these modified versions. Copyright even allows

us to prevent everyone from receiving a copy of our software product.

However, if someone wants to license their product that won‘t be their

intention. Instead, a license aims to not give property rights over the

software that has been distributed to you, but it enables you to use the

software under certain limits and conditions. In the case of a contract,

more rights and power can be given than the current owner currently

holds. The licensor can’t do this with his software product. However, they

can restrict and state conditions that have to be fulfilled.

Often companies seek to have more power than the copyright law allows

them to have. They do this by licensing their software to others, but

under conditions which aren’t stated in the copyright law. (Malcolm,

2003)

3.2 What is not a Software License

A license isn’t the same as a contract. A contract requires that there is an

exchange between two parties. This is not the case with open source

software. The licensee usually does not provide anything to the person

who gives out the licenses. Therefore, no contract is established between

a licensor and a licensee. Additionally, a contract must be accepted and

this acceptance must be visible in a way. This means you must have had

a reasonable chance to consider whether to disagree or agree on the

contract and that you have made a clear and visible decision to accept

the terms of the contract. (Malcolm, 2003)

10

4 Apache vs. GPL

4.1 Assessment of GPL

4.1.1 Copyleft

Copyleft licenses require, unlike permissive license, that all derivative

work from the original source must also be released under the copyleft

license. In essence, copyleft prohibits developers from placing

restrictions on users, when they redistribute the software. One could

conclude from this that permissive licenses provide freedom to the

downstream developers, while copyleft licenses provide freedom to the

end users.

Copyleft can be explained with a simple example. If a program is written

and redistributed to you, you can edit and use it freely. If you wanted to

release version changes and distributed a new software you would have

to release them under the same license as the source software.

However, you don’t have to release your change under the same license.

It only must be compatible with the original. For simplicity sake, the

original license is usually kept. GPL is the most commonly used copyleft

license. (Cotton, 2016)

11

4.1.2 GPLv3

The GPLv3 license was published on June 29, 2007. When software is

released under the GPLv3 license it automatically becomes free

software. Also, all derivative works will become free regardless of who

changes the software or what in the code is edited. This means that the

software is copylefted. The source code is protected by copyrights, but

the rights aren’t being used to restrict users in editing, modifying and

redistributing the software. Instead, a copyleft license aims to ensure that

every user will have freedom in regards to using the software.

GPL3 comes with a few new updates in order to deal with technological

and legal advancements. Firstly, there is protection from tivoization.

Some businesses have made devices that run GPL licensed software,

but they changed the hardware in a manner that allows them to make

changes to the software. However, you can’t edit the running software.

The owner should be the one in control. As soon as a device prevents

the user from having control it is called tivoization.

Secondly, a law has been made which forbids free software. For

example, the European Union Copyright Directive and the Digital

Millennium Copyright Act make it illegal to develop or distribute software

that circumvents digital restriction management. Ideally, these laws

shouldn’t make the rights, that GPL grants, ineffective.

Finally, there is protection from discriminatory patent deals.

Rendering Laws ineffective that forbid Free Software

It’s possible to write software that renders DRM ineffective and

redistribute it without being prosecuted for bypassing Digital Rights

Management measures. (Smith, 2014)

Protecting the Right to modify Software freely

The rights to change one‘s own software is rendered useless if the

hardware does not allow it. GPLv3 prevents this from happening by

12

forcing the distributor of the delivered software to give information on how

to install changed software on a device. Therefore, you must be able to

get the information that is needed to install GPL3 software.

Protection against Patent Infringement Lawsuits

When a developer distributes software released under GPL3 they also

have to give the users patent licenses which allow them to exercise the

rights of the GPL3 license. Furthermore, if a licensee attempts to use a

patent in order to prevent a user from exercising their rights, the license

will be canceled. As a result, downstream developers and users don’t

need to worry about any future patent lawsuits. GPL3 aims to defend

better against patent lawsuits than any other license out there.

With GPL3 there are new compatible licenses such as Apache License

2.0. Other small changes include other ways to convey source code, less

source to hand out and an easier way to comply with the terms and

conditions of GPL if you have broken them. (Smith, 2014)

13

Figure 1: GPL Compatibility. From Compatibility of

several FOSS licences with the GPL versions. by

Daniel M. German and Jes ́us M. Gonz ́alez-

Barahona, 2009, Copyright 2009 by Daniel M.

German and Jes ́us M. Gonz ́alez-Barahona.

4.1.3 LGPL

LGPL allows developers to combine free software with non-free modules.

LGPL is different from strong copyleft licenses such as GPL. It aims to be

a compromise between permissive licenses such as Apache and copyleft

licenses such as GPL. If a software component distributed under the

LGPL license is modified it has to be published under the same license.

LGPL is primarily used for software libraries. (Wikipedia contributors,

2019)

Notice has to be given that the library is licensed under LGPL and it’s

object source code.

Also, a copy of the GPL and the license document have to be provided

altogether. (Opensource.org, 2007)

Why the use of LGPL is not advised by the GNU Organisation

Developers of proprietary software can’t use GPL licensed code as they

would have to release their proprietary code under the GPL. So the

advantage is that only free software developers are allowed to use GPL

licensed code. However, using GPL in all situations may not be

advantageous. There are cases where it makes sense to use a less strict

copyleft license. For example, GPL C library was released under the

LGPL license. There are plenty of C libraries out there. If that library was

licensed under LGPL this would shy away proprietary software

developers. There are no benefits for GPL in that, as there are plenty of

alternative C libraries. GPL should be used so people will be motivated to

contribute to free software projects if they want to use other GPL licensed

code in their work. (Free Software Foundation, 2016)

14

4.1.4 A Closer Look at the Anti-DRM Section

This new section seems rather like a harmless change however, it places

strong restrictions upon developers who aim to use GPLv3 code. In fact,

out all of the changes that were introduced with Version 3 the Anti-DRM

Section is one of the most discussed ones. It essentially says that para-

copyright measures shouldn’t apply to GPLv3 work. Furthermore, GPLv3

demands that developers are obligated to not forbid circumvention of

DRM so the users can fully make use of GPLv3 freedoms. (Asay, 2008)

Additionally, Section 6 says that users must be able to use modified

forms of GPLv3 software on devices that are designed to prevent doing

exactly that. Moreover, it demands to provide Installation information,

encryption keys, as well as any other information required to make use of

the modified software, has to be given additionally to the source. (Asay,

2008)

The Free Software Foundation and Richard Stallman the author of this

license firmly believe that this section was absolutely necessary in order

to protect the freedoms of the users and to deal with the ever-growing

threat coming from para-copyright. The term “tivoization” was coined,

which basically describes the case with TiVo, where they tried to restrict

users freedom. TiVo used GPL software in combination with their well

know digital video records. However, they managed to restrict users by

adding digital keys to the software and hardware. The users were able to

change TiVo’s source code, but the edited software would not function

properly afterward, because the keys in the software and the hardware

wouldn’t match. TiVo wasn’t the only case. The FSF reported that more

and more hardware manufacturers decided to make use of these

techniques in order to restrict user freedoms. (Asay, 2008)

Many who share the philosophy of the Open Source Initiative have taken

a stance against the Anti-DRM section. Linus Torvald who supports the

OSI’s way has been criticizing GPLv3 while it was being drafted. His critic

15

was mainly directed towards the anti-DRM section. In his opinion, this

section was written out of following their almost “religious” belief about

free software instead of acting rationally. Many see this section as a way

to control hardware manufactures through the software license. (Asay,

2008)

Linus believes it is reasonable for a manufacturer to force hardware to

use only one version of software licensed under the GPL, because the

manufacturer may have only tested only that version. Their concern is

particularly justified when it comes to medical devices where it may be

necessary to have DRM to forbid not tested versions. Also, where

protection of privacy is important DRM has a role to play. Many also say

that GPL is controlling where their software is being used.

However, FSF most likely has no intention to control hardware

manufacturers but merely aims to protect it’s users freedoms. The FSF

concern that developers are using hardware to dodge the restrictions of

GPL is legit. Without the DRM section, FOSS could potentially resemble

proprietary software more and more. (Asay, 2008)

People supporting the anti-GPLv3 view say that the Anti-DRM section

could reduce the contributions coming from corporate businesses. As a

result, this could weaken the FOSS movement. Secondly, it is believed

that this change would cause less innovation and cooperation. Therefore,

FSF wishes to foster more innovation could potentially be crippled by

GPLv3 anti digital restriction management if corporate contribution

becomes less prevalent through it.

In fact, companies seem to dislike GPLv3 so far because GPlv3 is

somewhat “viral”. Viral in the sense that it basically “infects” other

software and now with the anti-DRM section it can now even control the

hardware that it runs on.

Even though the anti-DRM section may put companies at unease it will

most likely not stop enterprises from contributing. The main reason is that

16

this section won’t prevent businesses from using software licensed under

GPLv3 internally. Most companies do not distribute their software.

Therefore they are not obligated to hand out the source code. This is the

case for many companies. (Asay, 2008)

Moreover, there are many companies that make utilize web-based

GPLv3 software. They do not distribute the licensed program. For this

reason, being there are in no obligation to reveal the source code as well

as any installation information. This case also applies to a large number

of companies and they help the FOSS development thrive. (Asay, 2008)

4.1.5 Software Patents

Both the OSI and FSF are of the opinion that software patents cripple

innovation. Additionally, they think that the protection provided by the

copyright law should be sufficient when it comes to software. In GPLv3 a

contributor who contributes code licensed under GPLv3 provides a

patent license to all licensees.

The contributor only hands out a patent license when he distributes

software that contains his modifications. A contributor is defined as a

copyright holder who allows the use of a GPLv3 code. Additionally, the

patent license is valid for the entire distributed software not only the part

which the contributor provided.

The Free Software Foundation believes that patent essentially prevents

innovation because innovative developers could face a patent lawsuit

from the patent holders. Secondly, patent law gives the owners of

patents the right to stop developers from using their intellectual property.

This is not desired by the FSF as they think that goes against the vision

of free software. Instead, they want open standards and the four

freedoms to be exercised. (Asay, 2008)

17

Then there is the problem that the US government hands out patents

quite easily, which makes it even more likely for software ideas to be

involved in a patent lawsuit. To make everything worse checking

software innovation for patents is harder and even if that has been done

many still think that there is a chance that they will violate a software

patent. As a result, GPLv3 aims to stop patent holders from diminishing

developers freedom. (Asay, 2008)

The possible consequences of the patent section are similar to the anti-

DRM section. Many companies may fear using GPLv3. For example, if a

company hands out software they effectively give up their ability to file a

patent law infringement lawsuit for using the licensed software. Therefore

distributing GPLv3 source code could have the effect of making their

software patents useless in this scenario.

So, it’s probably better for them to just stay away from GPLv3 in order to

protect their patent portfolio. GPLv3 goal was to hinder license

proliferation by making GPLv3 popular so that developers would flock to

it. However, the section on patents may have the opposite effect.

Companies may see GPLv3 as a risk and end up stopping their support

and contributions for GPLv3. (Asay, 2008)

Additionally, it should be mentioned that GPLv3 patent section helps to

bring some balance in the world of the developers. Large enterprises

utilize their patent portfolio to prosecute other or to strike out deals where

they come out as the obvious winners. In addition, currently, the system

encourages companies to cause unnecessary costs with patent lawsuits.

These financial resources could be instead used to foster more

innovation and software development. Finally, it should be noted that

these patent provisions aim to protect developers from being potentially

prosecuted by large corporations. The patent section could potentially

facilitate development since developers would be less scared of patent

infringement lawsuits. (Asay, 2008)

18

4.2 Assessment of Apache License

4.2.1 Permissive License

A permissive license is similar to a copyleft license however, also permits

proprietary derivative work. There is only a minimum of requirements

placed on how open source software component can be used.

Furthermore, the licensee has a certain degree of freedom regarding

usage, modification, and redistribution of open source code. Open source

code can be used in proprietary work and hardly needs any conditions to

be fulfilled in order to do so. (Goldstein, 2019)

Many developers prefer permissive licenses because there is more

simplicity in reusing source code. Keeping track of source code reused

from multiple sources can be of concern. Permissive licenses are

compatible with all other licenses. (Hanwell, 2014)

4.2.2 Apache License 2.0

The Apache license 2.0 is an open source software license drafted by the

Apache Software Foundation. It’s frequently used and has a big

community that supports it. Software licensed under the Apache License

2.0 can be freely used, modified, and distributed however, the terms and

condition of the Apache license must be followed.

The Apache license 2.0 is a permissive license. The rights granted by the

Apache license are applied to both patents and licenses. One has to bear

in mind that the unmodified code has to be published under the Apache

license. Also, it is not allowed to name your software product in a way

that suggests that the Apache Software Foundation endorses your

product.

19

Derived and modified work can be released under different licenses

however, this license requires you to make notices about the

modifications you have made in the original software. Apache-licensed

software can be used in proprietary software free of charge. (Sass, n. d.)

The Apache License Version 2.0 is not very popular if judged by the

number of projects that uses this license. Roughly 2% of the projects on

SourceForge make use of this license. However, one shouldn’t be misled

by these numbers. It’s an important license considering that it’s being

used by Apache HTTP server, which is quite commonly used by web

servers. Additionally, projects launched by the Apache Software

Foundation and Android utilize the Apache License. Furthermore, the

Apache License is well developed and isn’t dependent on interpretations

of its community to deal with potential legal issues. (Sinclair, 2010)

Copyright License

The Apache License is probably drafted with consideration to the US

Copyright Act since the grant language is similar to the rights defined in

Section 106 of the US Copyright Act. This license grants rights from

every “Contributor”. A contributor is defined as someone who has

ownership over the work or some parts of it. The idea that the rights

granted by a contributor to everyone who wants to make use of their

work is not new in open source licensing, but in some cases, this is not

being explicitly stated.

A worth mentioning feature of Apache License 2.0 is that it allows

sublicensing. The intention behind this might be so it is possible to

combine Apache License with other software licenses. For example, if it

is desired to put together code licensed under Apache 2.0 with code

under a copyleft license, the licensee is obligated to sublicense the

Apache 2.0 code under the copyleft code. (Sinclair, 2010)

20

Patent License

Upon receiving Apache-licensed code the licensee receives both a

copyright license and a patent license. This is rather uncommon with

permissive open source licenses since patents are rarely mentioned.

The patent license only counts for the patents provided by the contributor

that is needed by the contribution. (Sinclair, 2010) A contributor is

basically anyone who contributes source code to the project. Every

contributor grants permission to all licensee to use their patents that are

being used in the contribution. This prevents contributors from filing a

patent lawsuit against the users of the software. (Kaufman, 2018)

Furthermore, Apache License 2.0 only provides a narrow patent license

meaning the patent license will not apply to any changes made in the

future. Therefore the grant only is valid for the contribution.

Redistribution

Someone who distributes Apache-licensed software must attach a copy

of the Apache Software license and provide a log of the changes made to

the edited files. In the section where the redistribution requirements are

elaborated the term “derivative work” is quite frequently mentioned. This

is probably because the conditions of the distribution of Apache-licensed

software only plays a role in regards to derivatives.

Contributions

Any work that makes use of Apache-licensed code without saying so or a

license notice counts as code licensed under the Apache License 2.0.

However, this is not the case when the developer adds the note “not a

contribution”. This clause is important because it diminishes any license

uncertainty when it comes to software that is submitted informally.

(Sinclair, 2010)

21

4.3 Comparision of the two Licenses

Generally speaking, developers seem to favor GNU General Public

License while companies rather like the Apache Software License more.

OpenLogic has conducted some research which shows differing

preferences between developers and enterprises. Developers prefer

releasing their code under the GPL. However, companies avoid GPL and

seem to gravitate towards Apache license or other less restrictive

licenses. Enterprises often avoid copyleft licenses out of fear of their

requirements and the potential outcome they may have on their

intellectual property.

One has to remember that GPL forces anyone who uses GPL code in

their project to release their software that makes use of GPL software

components under the GNU General Public License. The general opinion

on GPL is that it forces you to distribute your program in a way that you

have to publish your whole software under the GPL. (Merill, 2011)

Additionally, it is possible that software developers may not actually like

GPL. It is speculated that because there is so much GPL code out there

people rather choose not to program software components from scratch

but rather adapt GPL code to their own needs instead. This forces you, of

course, to release your entire program under the GPL.

Apache License is different in that sense. It does not obligate you to

distribute your project as GPL does. Companies tend to favor Apache

Software License for the reason that the license clearly states what is

permitted and what not in conventional legal language. However, one

has to bear in mind that there are a few exceptions to a general dislike of

GPL by enterprises. (Merill, 2011)

22

Furthermore, when a developer modifies software that is licensed under

Apache and releases it, he doesn’t have to publish the modified version

of the open source software. Additionally, he is not obligated to send the

changes done to the open source software to the upstream developers.

The developer just has to attribute the work appropriately and provide a

copy of the Apache Software License with the released software. This is

obviously a huge benefit for people who use the Apache license. (Ricky,

2011)

4.3.1 Rise of Open Source and Apache-Style licensing

It was common in 2008 to think that the open source movement would

suffer greatly without any contribution. However, since then open source

growth has been steady. This change in trend is due to permissive

licensing and the Apache Software license becoming more popular.

Additionally, web giants such as Facebook have been actively

contributing to open source projects. This growth is mostly caused by a

focus on encouraging developer communities to participate in open

source projects instead of trying to make more money. Paradoxically,

due to this change, the open source community has made more money

and at the same time managed to become more sustainable. (Asay,

2013)

GPL was more important during the early years of the FOSS movement,

but with time the trend has shifted towards Apache-style licensing.

Developers have been turning their back to GPL. GPL essentially desires

that all software should be free. The license should stop any means from

turning free source code into a proprietary one. Unlike Apache 2.0, the

GNU General Public License places a significant restriction on anyone

who agrees to the GPL conditions. If you use GPL code you have to

distribute derivative works under the General Public License.

23

With Apache 2.0 this is not the case. Supporters of Apache think

software should be free, but they do not believe that forcing others into

releasing free software only is a good decision. Apache licensees are

given more choice in regards to what they can do with the licensed

software.

As a result, the number of software licensed with Apache Software

License has grown substantially. (Asay, 2013)

4.3.2 GPL losing Popularity

GPL’s decline could be seen as a rejection of the ideas behind free

software and its rigid restrictions. GPL requires all derivative work to be

licensed under GPL including software that links to GPL programs. This

causes fear among developers, enterprises. It is free however one might

have to face the repercussions of how GPL source code may taint one‘s

own software. This is a risk many aren’t willing to take.

Around 2005 legal departments tried to figure out how to get involved

with open source code without causing any legal issues. GPL was seen

as a problem and often Apache was picked for software projects. Since

Apache doesn’t demand as much from users as GPL does, legal counsel

is more willing to embrace Apache. Furthermore, it was easier to finish a

project with Apache source code than with GPL-licensed code. Apache

simply made it easier to get a program done. (Asay, 2013)

After a while, Facebook started to contribute to open source projects,

which was unusual since big companies would usually keep the

modifications to open source projects to themselves. They believed that

their changes to software would only benefit their competitors and no one

else because only the big companies would be able to make use of their

programs effectively.

24

However, web giants have changed their opinion and now believe that

how they handle software is what really distinguishes themselves from

one and another. Furthermore, Facebook started offering services that

were enabled through open source software to others. They didn’t have

to sell the software anymore, which made it more viable for them to

contribute to the open source community.

Other companies have adopted new business strategies namely selling

proprietary software or services that are linked together with open source

programs. This enables them to contribute to open source projects while

making money at the same time. Finally, it can be said that these

companies generally favor Apache licenses. (Asay, 2013)

Enterprises tend to favor open source these days and releasing software

under permissive licenses such as Apache or MIT. The open source

approach is better with software licenses such as Apache. The

restrictions placed by GPL on the users and developers is just too much

to make it worthwhile to release code under GPL. Even Linus Torvald

thinks that GPL’s way of scaring freeloaders away is not beneficial. He

believes this is how open source simply works. Value is created by

contributions to the open source software as well as running the open

source software. (Asay, 2013)

4.3.3 Most popular Licenses in 2018

WhiteSource research team has gathered information in order to figure

out which software licenses were the most frequently used in 2018. Also,

data from 2016 and 2017 was used to put in contrast.

The conclusion of this research is that the trend towards permissive

licenses continues to go on, while copyleft licenses and especially GPL

are still in a decline.

25

Apache Software License 2.0 manages to take second place in the

category top 10 most popular open source license of 2017. This is no

surprise as a permissive license doesn’t aim to restrict it’s users much.

Based on WhiteSource data their finding is that 64% of open source

software components are released under a permissive license. Last year

this number was at 56%. While permissive licenses are becoming more

popular, the usage of copyleft licenses is decreasing. 36% of the most

popular 10 software licenses are actually copyleft licenses. (Goldstein,

2018)

One explanation for this trend is the growing usage of open source

software. In the past few years, the open source community has gained

more support from enterprise developers. Companies such as Google

and Microsoft are contributing to open source projects. When it comes to

license selection for open source software, permissive licenses are

favored. (Goldstein, 2018)

26

Figure 2: Top 10 Open Source Licenses in 2018. From Top 10 Open Source Licenses in

2018 by Ayala Goldstein, 2018,

https://resources.whitesourcesoftware.com/blog-whitesource/top-open-source-licenses-

trends-and-predictions. 2018 by Goldstein/WhiteSource

In 2017 Apache 2.0 managed to make it to the second place in

WhiteSource Top 10 List. In 2018 Apache Software License 2.0

managed to grow even further and increased their score of 21% usage to

22%. (Goldstein, 2018)

27

Figure 3: Apache 2.0 Usage Over The Years. From Apache 2.0 Usage Over The Years by

Ayala Goldstein, 2018,

https://resources.whitesourcesoftware.com/blog-whitesource/top-open-source-licenses-

trends-and-predictions. 2018 by Goldstein/WhiteSource

GPLv3 and GPLv2 are continuing to decline. GPLv3 is still at place three

with 16%, but they had 18% in 2017. GPLv2 is still ranked at place 4

however, it lost one percent in 2018 and fell to 10%.

2017 GPL 3.0, GPL 2.0 and LGPL 2.1 had a combined score of 35%

which fell to 32% in 2018. It is reckoned that this decline will continue

going on. (Goldstein, 2018)

28

Figure 4: GNU GPL Usage Over The Years. From GNU GPL Usage Over The Years by

Ayala Goldstein, 2018,

https://resources.whitesourcesoftware.com/blog-whitesource/top-open-source-licenses-

trends-and-predictions. 2018 by Goldstein/WhiteSource

4.3.4 Choosing a License for Commercialization

Choosing a license for your software project is an important decision to

make when you want to begin a project. For most programs, permissive

licenses such as Apache or MIT are chosen.

Many are scared of the GPL as it might prevent users from utilizing their

program. This concern is not unfounded since Google has banned the

use of AGPL3 software. Of course, it is hard to commercialize a product

that no one wants to use. (Wang, 2018)

It’s not very clear what license to choose if you want to get the most out

of your software project. In order to shine some light on this issue data

from the index OSS.cash has been looked at.

In November 2018 this index has logged roughly 140$ Billion revenue of

open source software companies.

This graph shows how much revenue can be attributed to some licenses.

29

Figure 5: License Valuation. From No Name, by Kevin Wang, 2018, https://fossa.com/blog/which-open-

source-license-is-the-best-for-commercialization/. 2018 by Kevin Wang.

https://fossa.com/blog/which-open-source-license-is-the-best-for-commercialization/
https://fossa.com/blog/which-open-source-license-is-the-best-for-commercialization/

Most Open Source Software enterprises make use of permissive

licenses, however, companies which develop software which is licensed

under a copyleft license seem to generate the most revenue. (Wang,

2018)

If we look at the average value of each license type we will find a

different result.

It’s difficult to recommend a default license for every newly started

project. The data shown isn’t enough as the index only tracks 38

companies. Furthermore, GPL was very common with older generation

companies, which have had more opportunities to generate value than

others. Roughly 40% of the companies which were founded before 2007

licensed their software under a copyleft license, while only roughly 25%

of the companies founded after 2007 used a copyleft license.

Additionally, there are outliers such as Redhat which make GPL seem

more prevalent.

30

Figure 6: Average License Valuation. From No Name, by Kevin Wang, 2018,

https://fossa.com/blog/which-open-source-license-is-the-best-for-commercialization/. 2018 by Kevin

Wang.

https://fossa.com/blog/which-open-source-license-is-the-best-for-commercialization/

With this in mind, it should be safe to say that copyleft licenses are viable

in a business environment. It’s not possible to say, that restrictive

licensing will help your business flourish better however many companies

have broken the 100$ million revenue mark with copyleft licensed

software. (Wang, 2018)

31

5 Conclusion

The Apache License is much wordier and therefore allows less room for

interpretation. It also added a new definition in order to deal with patents.

This software license is written in consideration with the OS Copyright

and Patent Law, which allows to clear up things in regards to licensing.

(Sinclair, 2010)

Permissive Licenses such as Apache License 2.0 are gaining popularity.

They put strict restrictions on its users as copyleft licenses do. It allows

you to use, edit and convey open source without asking much in return.

More and more people are using open source software components in

their code while copyleft is becoming less popular. Additionally, giants

such as Facebook and Google are contributing to open source projects.

GPL doesn‘t have a good prognosis. It will probably continue to decline.

Companies seem to avoid GPL. (Goldstein, 2018)

GPLv3 saw some significant changes. The patent provision and the Anti-

DRM section has caused a lot of controversies. However, GPLv3 seems

to have found a balanced way to deal with the DRM. It may harm

companies who want to implement DRM measures however, users

freedom will be preserved by this.

Patent prosecutions are a real threat to developers. The patent section

protects them for now especially from companies with sufficient financial

resources. The patent term may prevent some companies from using

GPLv3 however, it is unlikely that this will be GPLv3 end. However, it will

maybe slow down the movement. GPLv3 may not be the most optimal

solution however, it is taking steps in the right direction. (Asay, 2008)

32

6 References

Asay, M. (2013). Q&A. Is Open Source Sustainable?. Technology

Innovation Management Review, 3(1).

Asay, C. D. (2007). The general public license version 3.0: Making or

breaking the foss movement. Mich. Telecomm. & Tech. L. Rev., 14, 265.

Gangadharan, G. R., D’andrea, V., De Paoli, S., & Weiss, M. (2012).

Managing license compliance in free and open source software

development. Information Systems Frontiers, 14(2), 143-154.

German, D. M., & González-Barahona, J. M. (2009, June). An empirical

study of the reuse of software licensed under the GNU General Public

License. In IFIP International Conference on Open Source Systems (pp.

185-198). Springer, Berlin, Heidelberg.

Malcolm, J. (2003). Problems in Open Source Licensing. In Australian

Linux conference.

Sinclair, A. (2010). License Profile: Apache License, Version 2.0. IFOSS

L. Rev., 2, 107.

Free Software Foundation. (2019, March 20). What is free software?

Retrieved from https://www.gnu.org/philosophy/free-sw.en.html

Balakrishnan, Akshay. (2018, July 19). The history of Free and Open

Source Software, for the ‘Third Generation’. Retrieved from

https://medium.com/fossmec/the-history-of-free-and-open-source-

software-for-the-third-generation-9997b5f6e73c

Free Software Foundation Europe. (2019, June 12). What is Free

Software? Retrieved from

https://fsfe.org/about/basics/freesoftware.en.html

33

https://fsfe.org/about/basics/freesoftware.en.html
https://medium.com/fossmec/the-history-of-free-and-open-source-software-for-the-third-generation-9997b5f6e73c
https://medium.com/fossmec/the-history-of-free-and-open-source-software-for-the-third-generation-9997b5f6e73c
https://www.gnu.org/philosophy/free-sw.en.html

What is open source? (n. d.) Retrieved from

https://opensource.com/resources/what-open-source

Opensource.org. (2007, March 22). The Open Source Definition.

Retrieved from https://opensource.org/docs/osd

Cotton, Ben. (2016, August 12). What is copyleft? Retrieved from https://

opensource.com/resources/what-is-copyleft

Smith, Brett. (2014, November 8). A Quick Guide to GPLv3 Retrieved

from https://www.gnu.org/licenses/quick-guide-gplv3.en.html

Wikipedia contributors. (2019, June 15). GNU Lesser General Public

License. In Wikipedia, The Free Encyclopedia. Retrieved 16:22, June 19,

2019, from https://en.wikipedia.org/w/index.php?

title=GNU_Lesser_General_Public_License&oldid=901931174

Opensource.org. (2007, June 29). GNU Lesser General Public License

version 3. Retrieved from https://opensource.org/licenses/LGPL-3.0

Free Software Foundation. (2016, November 13). Why you shouldn't use

the Lesser GPL for your next library. Retrieved from https://www.gnu.org/

licenses/why-not-lgpl.en.html

Goldstein, Ayala. (2019, January 24). Open Source Licenses Explained.

Retrieved from https://resources.whitesourcesoftware.com/blog-

whitesource/open-source-licenses-explained

Hanwell, Marcus. (2014, January 28). Should I use a permissive license?

Copyleft? Or something in the middle? Retrieved from

https://opensource.com/business/14/1/what-license-should-i-use-open-

source-project

34

https://opensource.com/business/14/1/what-license-should-i-use-open-source-project
https://opensource.com/business/14/1/what-license-should-i-use-open-source-project
https://resources.whitesourcesoftware.com/blog-whitesource/open-source-licenses-explained
https://resources.whitesourcesoftware.com/blog-whitesource/open-source-licenses-explained
https://www.gnu.org/licenses/why-not-lgpl.en.html
https://www.gnu.org/licenses/why-not-lgpl.en.html
https://opensource.org/licenses/LGPL-3.0
https://en.wikipedia.org/w/index.php?title=GNU_Lesser_General_Public_License&oldid=901931174
https://en.wikipedia.org/w/index.php?title=GNU_Lesser_General_Public_License&oldid=901931174
https://www.gnu.org/licenses/quick-guide-gplv3.en.html
https://opensource.com/resources/what-is-copyleft
https://opensource.com/resources/what-is-copyleft
https://opensource.com/resources/what-open-source

Sass, Rami. (n. d.) Top 10 Apache License Questions Answered

Retrieved from https://resources.whitesourcesoftware.com/blog-

whitesource/top-10-apache-license-questions-answered

Kaufman, Jeffrey. (2018, February 16). How to make sense of the

Apache 2 patent license. Retrieved from https://opensource.com/

article/18/2/how-make-sense-apache-2-patent-license

Merill, Scott. (2011, n.d). Developers Prefer GPL, Enterprises Prefer

Apache. Retrieved from https://techcrunch.com/2011/05/17/developers-

prefer-gpl-enterprises-prefer-apache/

Ricky. (2011, July 18). Why Corporations Favor The Apache License

Over The GPL/LGPL

Retrieved from https://digitizor.com/apache-license-vs-the-gpl/

Goldstein, Ayala. (2018, December 13). Top 10 Open Source Licenses in

2018: Trends and Predictions. Retrieved from

https://resources.whitesourcesoftware.com/blog-whitesource/top-open-

source-licenses-trends-and-predictions

Wang, Kevin. (2018, November 14). Which open source license is best

for commercialization? Retrieved from https://fossa.com/blog/which-

open-source-license-is-the-best-for-commercialization/

35

https://fossa.com/blog/which-open-source-license-is-the-best-for-commercialization/
https://fossa.com/blog/which-open-source-license-is-the-best-for-commercialization/
https://resources.whitesourcesoftware.com/blog-whitesource/top-open-source-licenses-trends-and-predictions
https://resources.whitesourcesoftware.com/blog-whitesource/top-open-source-licenses-trends-and-predictions
https://digitizor.com/apache-license-vs-the-gpl/
https://techcrunch.com/2011/05/17/developers-prefer-gpl-enterprises-prefer-apache/
https://techcrunch.com/2011/05/17/developers-prefer-gpl-enterprises-prefer-apache/
https://opensource.com/article/18/2/how-make-sense-apache-2-patent-license
https://opensource.com/article/18/2/how-make-sense-apache-2-patent-license
https://resources.whitesourcesoftware.com/blog-whitesource/top-10-apache-license-questions-answered
https://resources.whitesourcesoftware.com/blog-whitesource/top-10-apache-license-questions-answered

7 Figures

Daniel M. German and Jes ́us M. Gonz ́alez-Barahona. (2009)

GPL Compatibility. [Photograph]. Retrieved from Compatibility of several

FOSS licences with the GPL versions.

Goldstein, Ayala. (2018). Top 10 Open Source Licenses in 2018.

[Photograph]. Retrieved from https://resources.whitesourcesoftware.com/

blog-whitesource/top-open-source-licenses-trends-and-predictions

Goldstein, Ayala. (2018). Apache 2.0 Usage Over The Years.

[Photograph]. Retrieved from https://resources.whitesourcesoftware.com/

blog-whitesource/top-open-source-licenses-trends-and-predictions

Goldstein, Ayala. (2018). Top 10 Open Source Licenses in 2018.

[Photograph]. Retrieved from https://resources.whitesourcesoftware.com/

blog- whitesource/top-open-source-licenses-trends-and-predictions

Goldstein, Ayala. (2018). GNU GPL Usage Over The Years.

[Photograph]. Retrieved from https://resources.whitesourcesoftware.com/

blog-whitesource/top-open-source-licenses-trends-and-predictions.

Wang, Kevin. (2018). License Valuation [Photograph].

Retrieved from https://fossa.com/blog/which-open-source-license-is-the-

best-for-commercialization/

Wang, Kevin. (2018). Average License Valuation [Photograph].

Retrieved from https://fossa.com/blog/which-open-source-license-is-the-

best-for-commercialization/

36

https://fossa.com/blog/which-open-source-license-is-the-best-for-commercialization/
https://fossa.com/blog/which-open-source-license-is-the-
https://fossa.com/blog/which-open-source-license-is-the-best-for-commercialization/
https://fossa.com/blog/which-open-source-license-is-the-
https://resources.whitesourcesoftware.com/blog-whitesource/top-open-source-licenses-trends-and-predictions
https://resources.whitesourcesoftware.com/
https://resources.whitesourcesoftware.com/blog-whitesource/top-open-source-licenses-trends-and-predictions
https://resources.whitesourcesoftware.com/blog-
https://resources.whitesourcesoftware.com/
https://resources.whitesourcesoftware.com/blog-whitesource/top-open-source-licenses-trends-and-predictions
https://resources.whitesourcesoftware.com/
https://resources.whitesourcesoftware.com/blog-whitesource/top-open-source-licenses-trends-and-predictions
https://resources.whitesourcesoftware.com/

	1 Introduction
	2 FOSS
	2.1 Free Software
	2.2 Open Source

	3 Software License
	3.1 What is a Software License
	3.2 What is not a Software License

	4 Apache vs. GPL
	4.1 Assessment of GPL
	4.1.1 Copyleft
	4.1.2 GPLv3
	4.1.3 LGPL
	4.1.4 A Closer Look at the Anti-DRM Section
	4.1.5 Software Patents

	4.2 Assessment of Apache License
	4.2.1 Permissive License
	4.2.2 Apache License 2.0

	4.3 Comparision of the two Licenses
	4.3.1 Rise of Open Source and Apache-Style licensing
	4.3.2 GPL losing Popularity
	4.3.3 Most popular Licenses in 2018
	4.3.4 Choosing a License for Commercialization

	5 Conclusion
	6 References
	7 Figures

