-------- Original-Nachricht --------
Betreff: [WI] CfP: Data Preparation for Data Mining Track at IDEAS 2014
Datum: Wed, 12 Mar 2014 08:59:26 +0000
Von: Markus Helfert <markus.helfert@computing.dcu.ie>
An: wi@aifb.uni-karlsruhe.de


——————————————————————————————————————

Data Preparation for Data Mining Track of the 
18th International Database Engineering & Applications Symposium (IDEAS 2014)
July 7-9, 2014, Porto, Portugal
http://confsys.encs.concordia.ca/IDEAS/ideas14/dataprepmine.php

 

(accepted papers will be included in the IDEAS14 proceedings and published by ACM)

 

-----Call for Papers ---------

Current technological developments allow the collection of huge amounts of data that can be used to support decision-making processes. However, this is only possible if data can be transformed into knowledge.

 

Various kind of data mining algorithms are used to extract data patterns.  Tasks for pattern extraction include classification (rules or trees), regression, clustering, association, sequence modeling, dependency, and so forth. However, much work in the field of data mining was built on the existence of data with quality, and real-world data is often incomplete, noisy, or inconsistent, representing an obstacle for efficient data analysis/mining. Other challenges include big data (number of features/examples, efficiency, parallel processing), curse of dimensionality, or the use of domain knowledge. Although most mining algorithms have some procedures for dealing with dirty data, they lack for robustness. Furthermore, low-quality data will lead to low-quality data analysis/mining results (Garbage in, garbage out). Data preparation techniques, when applied before mining, can substantially improve the overall quality of the data and consequently improve the mining results and/or the time required for the actual mining process. Thus, the development of data preparation techniques is both a challenging and a critical task. This special session on Data Preparation for Data Mining will address practical techniques and methodologies of data preparation for data-mining applications.

 

Topics of Interest:
--------------------------
   - Data collecting
   - Data integration
   - Data reduction
   - Data cleaning
   - Detection of outliers
   - Data/Information quality
   - Data profiling
   - Data enrichment
   - Feature selection and transformation
   - Data summarization
   - Data discretization
   - Data encoding
   - Sampling
   - Data preparation on regression/classification
   - Data preparation on segmentation/clustering
   - Data preparation on association rules
   - Data preparation on text mining
   - Data preparation on web mining
   - Data preparation on visual data mining
   - Data preparation on temporal and spatial data mining
   - Data preparation on multimedia mining (audio/video)

 

Important Dates:
--------------------------
   - March 24, 2014: Papers submission deadline
   - May 19, 2014: Notification of acceptance
   - June 9, 2014: Camera-ready deadline

  

 Track Organizing Committee:
--------------------------
   - Pedro Henriques, University of Minho, Portugal
   - Fátima Rodrigues, Institute of Engineering - Polytechnic of Porto, Portugal
   - Paulo Oliveira, Institute of Engineering - Polytechnic of Porto, Portugal
   - Alberto Freitas, Faculty of Medicine- University of Porto, Portugal

-- 
----------------------------------------------------
Dr. Markus Helfert
School of Computing

Dublin City University
Glasnevin
Dublin 9, Ireland

Director Business Informatics Research Group
http://www.computing.dcu.ie/big/

Research Affiliate at:
The Open Government Institute (TOGI)
Zeppelin Universität, Germany
Phone: +49 - 7541 6009 1476 
http://www.zu.de


IVI Research Fellow
http://www.ivi.ie/

Lecturer and Researcher in Information Systems

Phone:  +353-1-700-8727
Phone:  +49 -7541 6009 1476 
Fax:    +353-1-700-5442
Office: L2.26
Email: markus.helfert@computing.dcu.ie
http://www.computing.dcu.ie



----------------------------------------------------
Email Disclaimer

"This e-mail and any files transmitted with it are confidential and are intended solely for use by the addressee. Any unauthorised dissemination, distribution or copying of this message and any attachments is strictly prohibited. If you have received this e-mail in error, please notify the sender and delete the message. Any views or opinions presented in this e-mail may solely be the views of the author and cannot be relied upon as being those of Dublin City University. E-mail communications such as this cannot be guaranteed to be virus-free, timely, secure or error-free and Dublin City University does not accept liability for any such matters or their consequences. Please consider the environment before printing this e-mail."



Séanadh Ríomhphoist

"Tá an ríomhphost seo agus aon chomhad a sheoltar leis faoi rún agus is lena úsáid ag an seolaí agus sin amháin é. Tá cosc iomlán ar scaipeadh, dháileadh nó chóipeáil neamhúdaraithe ar an teachtaireacht seo agus ar aon cheangaltán atá ag dul leis. Má tá an ríomhphost seo faighte agat trí dhearmad cuir sin in iúl le do thoil don seoltóir agus scrios an teachtaireacht. D’fhéadfadh sé gurb iad tuairimí an údair agus sin amháin atá in aon tuairimí no dearcthaí atá curtha i láthair sa ríomhphost seo agus níor chóir glacadh leo mar thuairimí nó dhearcthaí Ollscoil Chathair Bhaile Átha Cliath. Ní ghlactar leis go bhfuil cumarsáid ríomhphoist den sórt seo saor ó víreas, in am, slán, nó saor ó earráid agus ní ghlacann Ollscoil Chathair Bhaile Átha Cliath le dliteanas in aon chás den sórt sin ná as aon iarmhairt a d’eascródh astu. Cuimhnigh ar an timpeallacht le do thoil sula gcuireann tú an ríomhphost seo i gcló."