Call for Papers - DDDM2010
The 2010 International Workshop on Domain Driven Data Mining
Sydney, Australia, December 14-17, 2010
In conjunction with the 2010 IEEE International Conference on Data
Mining (ICDM 2010)
URL: http://datamining.it.uts.edu.au/dddm/dddm10/
The Workshop on Domain Driven Data Mining (
DDDM) series
aims to provide a premier forum for sharing findings, knowledge,
insight, experience and lessons in tackling potential challenges in
discovering actionable knowledge from complex domain problems,
promoting interaction and filling the gap between academia and
business, and driving a paradigm shift from data-centered hidden
pattern mining to domain-driven actionable knowledge delivery in
varying data mining domains toward supporting smart decision and
businesses.
Following the success of DDDM2009 joint with ICDM2009 in the US,
DDDM2008 joint with ICDM2008 in the Italy, and DDDM2007 with SIGKDD,
DDDM2010 welcomes theoretical and applied disseminations that make
efforts:
o to design next-generation data mining methodology for actionable
knowledge discovery and delivery, toward handling critical issues for
KDD to effectively and efficiently contribute to real-world smart
businesses and smart decision and to benefit critical domain problems
in theory and practice;
o to devise domain-driven data mining techniques to bridge the gap
between a converted problem and its actual business problem, between
academic objectives and business goals, between technical significance
and business interest, and between identified patterns and business
expected deliverables, toward strengthening business intelligence in
complex enterprise applications;
o to present the applications of domain-driven data mining and
demonstrate how KDD can be effectively deployed to solve complex
practical problems; and
o to identify challenges and future directions for data mining research
and development in the dialogue between academia and industry.
Topics of interest
This workshop solicits original theoretical and practical research on
the following topics.
(1) Methodologies and infrastructure
o Domain-driven data mining methodology and project management
o Domain-driven data mining framework, system support and infrastructure
(2) Ubiquitous intelligence
o Involvement and integration of human intelligence, domain
intelligence, network intelligence, organizational intelligence and
social intelligence in data mining
o Explicit, implicit, syntactic and semantic intelligence in data
o Qualitative and quantitative domain intelligence
o In-depth patterns and knowledge
o Human social intelligence and animat/agent-based social intelligence
in data mining
o Explicit/direct or implicit/indirect involvement of human intelligence
o Belief, intention, expectation, sentiment, opinion, inspiration,
brainstorm, retrospection, reasoning inputs in data mining
o Modeling human intelligence, user preference, dynamic supervision and
human-mining interaction
o Involving expert group, embodied cognition, collective intelligence
and Consensus construction in data mining
o Human-centered mining and human-mining interaction
o Formalization of domain knowledge, background and prior information,
meta knowledge, empirical knowledge in data mining
o Constraint, organizational, social and environmental factors in data
mining
o Involving networked constituent information in data mining
o Utilizing networking facilities for data mining
o Ontology and knowledge engineering and management
o Intelligence meta-synthesis in data mining
o Domain driven data mining algorithms
o Social data mining software
(3) Deliverable and evaluation
o Presentation and delivery of data mining deliverables
o Domain driven data mining evaluation system
o Trust, reputation, cost, benefit, risk, privacy, utility and other
issues in data mining
o Post-mining, transfer mining, from mined patterns/knowledge to
operable business rules.
o Knowledge actionability, and integrating technical and business
interestingness
o Reliability, dependability, workability, actionability and usability
of data mining
o Computational performance and actionability enhancement
o Handling inconsistencies between mined and existing domain knowledge
(4) Enterprise applications
o Dynamic mining, evolutionary mining, real-time stream mining, and
domain adaptation
o Activity, impact, event, process and workflow mining
o Enterprise-oriented, spatio-temporal, multiple source mining
o Domain specific data mining, etc.
Important Dates
July 23, 2010 Due date for full workshop papers
September 20, 2010 Notification of paper acceptance to authors
October 11, 2010 Camera-ready of accepted papers
December 14, 2010 Workshop date
Submission
All papers should be submitted through the ICDM2010 submission system
here (
http://wi-lab.com/cyberchair/icdm10/scripts/submit.php).
Paper submissions should be limited to a maximum of 10 pages in the
IEEE 2-column format, the same as the camera-ready format (see the IEEE
Computer Society Press Proceedings Author Guidelines). All papers will
be reviewed by the Program Committee
on the basis of technical quality, relevance to domain driven data
mining, originality, significance and clarity.
All papers accepted for the workshop will be included in the ICDM'10
Workshop Proceedings published by the IEEE Computer Society Press.
For more information
Please refer to the DDDM2010 website:
http://datamining.it.uts.edu.au/dddm/dddm10/