
1

An Introduction to Web Application Development –

Combining Jakarta Server Pages With Programs Written in

Scripting Languages

Bachelor Thesis by Dimitry-J. Lux

Supervised by ao. Univ. Prof. Mag. Dr. Rony G. Flatscher

Abstract: This thesis aims to communicate all knowledge necessary to

enable the reader to develop web applications quickly and efficiently. To

achieve this goal, three key tools are used: The Open Object Rexx scripting

language, the Bean Scripting Framework for Open Object Rexx and the

Apache Tomcat Software. Tag libraries are used to combine these

components. After discussing the main technological components, nutshell

examples with increasing complexity are used to guide the reader.

Methodology: This thesis commences with a brief literature review of the

main technologies used. Given the nature of the topic, most information

has been gathered from documentations, tutorials as well as selected

scientific papers. These core components were then utilized to create

nutshell examples, demonstrating possible implementations.

1. INTRODUCTION .. 1

2. TECHNOLOGIES .. 2

2.1. SYSTEM PROGRAMMING LANGUAGES AND SCRIPTING PROGRAMMING LANGUAGES .. 2
2.2. JAVA .. 4
2.3. JAVA AND SCRIPTING LANGUAGES .. 5

2.3.1. JSR 223 ... 5
2.3.2. Bean Scripting Framework ... 6

2.4. OPEN OBJECT REXX .. 6
2.5. BEAN SCRIPTING FRAMEWORK FOR OPEN OBJECT REXX ... 7
2.6. HYPERTEXT TRANSFER PROTOCOL .. 7
2.7. HYPERTEXT MARKUP LANGUAGE ... 9
2.8. JAKARTA SERVLETS .. 10
2.9. JAKARTA SERVER PAGES ... 11
2.10. APACHE TOMCAT ... 13
2.11. OPEN-SOURCE SOFTWARE ... 14

2.11.1 The Apache Foundation .. 14
2.11.2 The Eclipse Foundation, Jakarta Namespace .. 15

2.12. PUTTING IT ALL TOGETHER ... 16

3. APACHE TOMCAT FUNDAMENTALS ... 17

3.1. TOMCAT_HOME .. 17
3.2. DEPLOYING WEB APPLICATIONS .. 19
3.4. STARTING TOMCAT ... 20
3.5. TOMCAT MANAGER .. 22

4. INTRODUCING WEB APPLICATIONS /HELLOWORLD .. 22

4.1. WEB APPLICATION ARCHITECTURE ... 22
4.2. INTRODUCING JAKARTA SERVER PAGES /HELLOWORLD/HELLOWORLD.JSP.. 23

4.2.1. JSP Directives .. 24
4.2.2. JSP Content ... 25

4.3. BSF TAGLIB, STYLING, EXPRESSIONS /HELLOWORLD/HELLOWORLD_EXT.JSP ... 27
4.4. WELCOME FILES /HELLOWORLD/INDEX.HTML .. 31
4.5. AN INTRODUCTION TO COOKIES /HELLOWORLD/LASTVISIT.JSP ... 31
4.6. COMBINING USER INPUT AND COOKIES /HELLOWORLD/GREETING.JSP .. 34
4.7. DELETING COOKIES, EXTERNAL SCRIPTS /HELLOWORLD/GREETING_EXT.JSP ... 36

5. DATABASE CONNECTION ... 39

5.1. JAVA DATABASE CONNECTIVITY ... 39
5.2. JAVA NAMING AND DIRECTORY INTERFACE .. 40

6. E-COMMERCE EXAMPLE /TREESHOP ... 41

6.1. SETUP .. 41
6.1.1. Serving Static Content .. 42
6.1.2. Database Configuration ... 43
6.1.3. Tomcat’s Handling of .jar Files ... 43

6.2. READING DATA /TREESHOP/PRODUCTLIST.JSP .. 44
6.3. WRITING DATA /TREESHOP/SIGNUP.JSP ... 47

6.3.1. get and post Methods .. 48
6.3.2. Securely Storing Passwords .. 49
6.3.3. SQL Injection .. 50
6.3.4. Hypertext Transfer Protocol Secure ... 51

6.4. CREATING A DYNAMIC WEB PAGE, SESSIONS /TREESHOP/INDEX.JSP .. 52

6.4.1. mainpage.rex ... 54
6.4.2. userheader.rex ... 56

6.5. LOGGING IN /TREESHOP/LOGIN.JSP ... 56
6.6. INVALIDATING A SESSION /TREESHOP/LOGOUT.JSP .. 57
6.7. ACCESSING THE SHOPPING CART /TREESHOP/SHOPPINGCART.JSP .. 57
6.8. CONCLUDING THE PURCHASE PROCESS /TREESHOP/CHECKOUT.JSP ... 59

7. ADVANCED EXAMPLES /TREESHOP/ADMIN ... 59

7.1. UPLOADING FILES /TREESHOP/ADMIN/ADDPRODUCTS.HTML... 60
7.1.1. Upload Servlet /upload .. 62

7.2. COMMON GATEWAY INTERFACE.. 63
7.3. SENDING E-MAILS /TREESHOP/ADMIN/SENDNEWSLETTER.JSP .. 63

7.3.1. Sending and Receiving E-mails with MailHog /mailer .. 69
7.4. UNSUBSCRIBING FROM E-MAILS /TREESHOP/ADMIN/UNSUBSCRIBE.JSP ... 70

8. CONCLUSION ... 71

9. APPENDIX ... I

9.1. PREREQUISITES ... I
9.1.1. Software required to begin ... i
9.1.2. Software required for advanced examples: ... ii

9.2. TOMCAT INSTALLATION GUIDE .. III
9.3. TOMCAT 9 .. IX
9.4. POSTGRESQL .. X

9.4.1. Installation ... x
9.4.2. Setting up a Database for treeshop .. xxi

9.5. DEBUG CODE ... XXIV
9.6. MAILHOG ... XXIV

GLOSSARY ... XXV

FIGURES ... XXVI

LISTINGS ... XXVII

REFERENCES .. XXVIII

IMAGES USED .. XXXIX

1

1. Introduction

The World Wide Web was invented by Sir Tim Berners-Lee at the European

Organization for Nuclear Research. In 1990 he created the first web client

and server, as well as the specifications for Uniform Resource Identifiers

(URI), the Hypertext Transfer Protocol (HTTP) and the Hypertext Markup

Language (HTML) [1]. With HTTP being a stateless protocol [2, p. 1], in the

beginning web pages were simple, static sources of information. Today

users of the internet are used to performing complex tasks all from within

their web browser.

While the task of developing such web applications might daunting at first,

the tools used in this thesis will allow beginners to quickly create web

applications of their own. The Apache Tomcat Software (Tomcat) offers the

infrastructure and tools to deploy said web applications, mainly the Jakarta

Server Pages (JSP) technology. By interlacing HTML code with the human-

oriented [3] Open Object Rexx (ooRexx) programming language, results

can be achieved with minimal prior knowledge. The Bean Scripting

Framework for ooRexx (BSF4ooRexx) includes Tag Libraries (taglibs), used

to accomplish this. In addition, BSF4ooRexx allows the usage of the

countless internal and external Java classes all from within ooRexx. The

reader will be able to use these tools for web development, with the only

limiting factor being one’s imagination.

This thesis was written with the ooRexx programming language in mind.

While the development of web applications is being covered from the very

beginning, basic knowledge of ooRexx and HTML is recommended.

Nonetheless, the components used for web application development and

deployment support a multitude of existing scripting languages.

To begin with, 2. Technologies will discuss the underlying technologies of

the internet and web applications in theory. From 3. Apache Tomcat

onwards, nutshell examples are used to practically demonstrate the

concepts discussed. Put together, these examples will form a functioning

shopping web site. In case the reader would like to use any of this code, be

it in full or a fragment, the author encourages such usage, in hope it will

help.

2

For a collection of hyperlinks to all the software necessary, please refer to

the appendix: 9.1.1. Software required to begin.

2. Technologies

A Java web application is built upon a Java Runtime Environment provided

by a web server and a combination of components such as JSP’s, servlets,

JavaBeans, and static pages like HTML [4, Sec. 1.2.].

This section will introduce the core technologies used. First the

programming languages to create the programs are discussed, followed by

the infrastructure and technologies that enable them to be accessed over

the internet. Should the reader be familiar with these topics, he might wish

to jump directly to: 3. Apache Tomcat

2.1. System Programming Languages and Scripting Programming

Languages

In 1998 Ousterhout predicted that: “scripting languages will handle many of

the programming tasks in the next century better than system programming

languages” [5, p. 23].

“System programming languages were designed for building data structures

and algorithms from scratch, starting from the most primitive computer

elements such as words of memory. In contrast, scripting languages are

designed for gluing: They assume the existence of a set of powerful

components and are intended primarily for connecting components” [5, p.

23].

System programming languages were designed to abstract from assembly

languages to make the development process faster. While assembly

languages statements correspond directly to machine instructions, system

languages require a compiler which translates the source code into binary

instructions. Scripting languages abstract even further, with power and

ease of use in mind [5, pp. 23-24].

3

Scripting languages use interpreters instead of compilers. The translation

does not happen all at once, but instruction by instruction [6]. This allows

a quicker development process without compile times. Additionally,

programmers are more flexible since the applications are programmed at

runtime [5, p. 26]. In contrast to system languages, scripting languages are

usually kept in source form [7].

“Scripting languages are higher level than system programming languages in

the sense that a single statement does more work on average” [5, p. 26].

While system programming languages are generally strongly typed,

scripting languages do not share this trait. Typing refers to variables being

declared a particular type such as integer or string. A strongly typed

language offers performance gains, since the compiler only needs to load

specific instructions. While potential errors are detected during compile

time, errors in scripting languages occur when a value is used. Scripting

languages are generally typeless; variables can freely switch data types. This

results in the interchangeability of code and data, easing the process of

combining different components. Overall, strongly typed languages are

more restrictive and less flexible, yet more performant. [5, pp. 24-27].

With the increase of computing power, the performance difference is

negligible in most situations. In case of an application where performance

is crucial, a system programming language might be the better choice

though. This is particularly the case for programs that are slow to change.

On the other hand, scripting languages are particularly useful for programs

implementing a Graphical user interface, connect through the internet or

utility component frameworks like Java Beans [5, pp. 27-28].

Real life enterprise systems are usually made up of many programs working

together, like web servers, database servers and billing shipping and

receiver software. System administration, web applications and document

processing are areas where the application of scripting languages is

preferred [7].

In conclusion, scripting programming languages are a perfect match for the

development of web applications.

4

2.2. Java

Even though, the Java system programming language is not being directly

used for the creation of the example web applications, it is still used as an

underlying component throughout this work. Therefore, a basic

understanding of its architecture is required.

The main feature of the Java programming language is its architecture-

neutral approach. Instead of machine code its compiler creates so called

bytecode that runs on the Java Virtual Machine [8, Ch. 4]. The Java platform

is software-only and runs on top of hardware or software environments. In

addition to the Java Virtual Machine, the Java platform also includes the

Java Application Programming Interface (API) [9].

“The API is a large collection of ready-made software components that

provide many useful capabilities. It is grouped into libraries of related classes

and interfaces; these libraries are known as packages” [9].

After source code is written and saved with the .java extension it needs to

be compiled into a .class file by the javac compiler. A .class file contains

bytecodes which then gets read and executed by the Java Virtual Machine

[9].

The Java Language Classes, java.lang, contain the base types and are always

imported into a compilation unit. They include the fundamental classes,

such as object or the so-called wrapper classes for primitive types like

Booleans. The complete Java system also includes the libraries: java.io,

java.util and java.awt [8, Ch. 9]. These core libraries enable a huge variety

of features, such as network communications, security management or file

handling [10].

In addition, external libraries are created by other people to extend the

functionality of Java even further. These reusable bits and pieces can be

used to add missing functionality or help a programmer write less code and

therefore save time. Beginners can use them to create programs including

features they would not be able to create themselves. A library consists of

a bundle of packages, which hold Java classes and interface definitions [10].

The libraries also include the application programming interface (API)

documentation. Javadoc reads the comments in the library’s code and uses

5

them to create this API documentation, holding reference information to

ease usage. Libraries usually come usually packaged as .jar files [10].

Java Archives use the .jar extension and are based on .zip files. They are

used to package multiple files together, compressing them to decrease size.

While they usually hold multiple .class files, whole applications can be

packaged in the same way, also including pictures and audio [11].

2.3. Java and Scripting Languages

Generally, code written in a scripting language can be compiled into Java

bytecode, enabling its execution on the Java Virtual Machine. However, this

approach results in the loss of benefits that Java offers.

2.3.1. JSR 223

The Java Specification Request (JSR) 223 was released at the end of the year

2006 [12]. It enables the embedding of scripts in Java applications and the

access of Java objects from within scripts. A script written in compliance

with JSR 223 can access the entire standard Java library. Equally important,

a Java application written with JSR 223 in mind, allows the embedding of

scripts without the need to specify a scripting language [13, Sec. 1].

“A program specification describes the results that a program is expected to

produce -- its primary purpose is to be understood not executed.

Specifications provide the foundation for programming methodology” [14].

The Java Scripting API is defined by JSR 223. Its classes and interfaces can

be found in the javax.scipt package. It contains the ScriptEngineManager

class, which discovers script engines through the .jar file service discovery

mechanism. After discovery, a ScriptEngine object gets instantiated to

perform the interpretation [13, Sec. 2]. The ScriptEngine’s eval method is

used to execute a script that has been given as input parameter; afterwards,

the value that gets returned from the execution of the script is returned

[15].

The java.script API has been included in the Java Standard Edition since

version 6 [16].

6

2.3.2. Bean Scripting Framework

“JavaBeans are classes that encapsulate many objects into a single object (the

bean)” [17].

The Bean Scripting Framework resulted from a research project of Sanjiva

Weerawarana at IBM in 1999. Its goal was to access JavaBeans from

scripting language environments. The project continued as an open-source

project at IBM before it was donated to the Apache Software Foundation at

version 2.3 [18].

“Bean Scripting Framework (BSF) is a set of Java classes which provides

scripting language support within Java applications, and access to Java

objects and methods from scripting languages” [19].

The framework’s two main classes are the BSFManager and the BSFEngine

[19]. The BSFManager class gets instantiated when an application decides to

run a script. It is then used to register beans, load script engines, and run

scripts. Furthermore, the BSFManager registers all available script engines,

loads, and unloads them. Each Java Virtual Machine can run multiple

BSFManagers but each BSFManager can only load one engine per language

[20]. The BSFEngine abstracts a scripting language’s capabilities and allows

generic handling of script execution and object registration within the

execution context of the scripting language [19].

Releases under the newer version 3.x use the JSR 223 API. The Open Object

Rexx programming language is supported with its own BSF engine:

BSF4ooRexx [21].

2.4. Open Object Rexx

All the nutshell examples accompanying this thesis have been created using

the ooRexx scripting language. Even if the reader is not familiar with the

language, its easily understandable syntax might help with the

development of web applications in another language.

Initially developed in 1979 by Mike F. Cowlishaw, the Rexx programming

language aimed to make the programming of IBM mainframes easier to

7

understand and more human centric. After gaining popularity in the

industry, the language evolved in 1997, implementing object-oriented

features, in the IBM product Object Rex. In 2004 the source code was given

to the Rexx Language Association, which released the first open-source

version of the language, called Open Object Rexx. This powerful yet

extensible language is available for all major operating systems [22, pp. iii-

v].

2.5. Bean Scripting Framework for Open Object Rexx

In 2001, the Bean Scripting Framework for Rexx was first introduced at the

12th International Rexx Symposium by Rony G. Flatscher. In this first

iteration, based on a seminar paper by Peter Kalender, the Rexx and Object

Rexx interpreters were incorporated into the BSF framework. Henceforth,

it was possible for Java programs to invoke and cooperate with Rexx and

Open Rexx programs [23, p. 5]. Two years later, a further improved version,

with the ability to start Java from Rexx programs, was presented, allowing

Java to be used as a Rexx function library [24, p. 5]. In 2009, the first

BSF4ooRexx version was released, implementing new features made

possible by native ooRexx APIs introduced with ooRexx 4.0 [25, p. 4].

One of BSF4ooRexx’s main achievements is to camouflage Java, allowing

the ooRexx user to utilize Java class objects without requiring extensive Java

knowledge. The user can send messages to those so called “proxy classes”,

which will be forwarded to the Java object that they represent. This is

achieved by the Bean Scripting Framework supporting module BSF.cls. It

constructs an object-oriented interface to the Java Runtime Environment,

enabling access to features like Java arrays [26, pp. 13-18].

2.6. Hypertext Transfer Protocol

Before a client and a server can start communicating, they need to agree on

common rules for data transmission and the information’s structure. These

rules are established in form of a protocol [27].

8

The most popular protocols of the Internet, the Hypertext Transfer

Protocol, is an asymmetric, stateless pull protocol, running on the

application layer. The client sends a request and gets a response from the

server. This request is most often based on a Uniform Resource Locator,

which the browser converts to a request [28].

 “A URL (Uniform Resource Locator) is used to uniquely identify a resource

over the web. URL has the following syntax: protocol://hostname:port/path-

and-file-name” [28].

It typically runs over a TCP/IP connection, but also allows other reliable

transport methods. Given its stateless nature, requests are not connected,

and are not aware of previous communications. The negotiation of data

type and representation systems are independent from the way the data is

transferred [28].

In addition to the get request method, post is used to send data to the

webserver, while delete requests its deletion [28]. A typical HTTP request

can be seen in the image below, after the request line, headers inform the

receiver about what type of files can be received and includes other

information, like the message’s length.

Figure 1: HTTP Request [28]

After the request is sent, the server replies with a response message. As can

be seen in the figure below, instead of a request line it begins with a status

code. For example, the Code 404 means that the requested resource cannot

be found. While the response headers include additional information, the

requested content can be found in the message body.

9

Figure 2: HTTP Response [28]

2.7. Hypertext Markup Language

While first intended to describe scientific documents, the Hypertext

Markup Language soon became the core markup language of the World

Wide Web [29, Sec. 1.1.].

HTML is used to define the structure of a web page. A tree of elements,

such as <head>, <body>, or <p> is used to describe how a document is to be

displayed [30]. Each element consists of a starting and end tag, with the

content displayed in between: <>Text</>. Additionally, elements can have

attributes placed in their start tag: <form action=”put”> [29, Sec. 1.9.].

It is important to note that: “HTML documents represent a media-

independent description of interactive content. HTML documents might be

rendered to a screen, or through a speech synthesizer, or on a braille display.”

[29, Sec. 1.9.].

When a web browser parses such a document, it transforms it into a

Document Object Model (DOM) tree and stores it in memory. While this

representation of a web page is static in nature, scripts can be used to

manipulate it [29, Sec. 1.9.].

The presentation of such a document can be altered using Cascading Style

Sheets (CSS): “The CSS1 language is human readable and writable, and

expresses style in common desktop publishing terminology” [31]. CSS rules

can be either applied by an external file, or within the HTML document

itself, in form of inline styling.

10

2.8. Jakarta Servlets

A servlet is a program running inside a web server that creates a customized

or dynamic response for each incoming HTTP request. For example, the

user might have filled in a form on a web page. On submission, a web page

will be tailormade according to the input parameters. Another example

would be the creation of a user-specific webpage, using data from a

database or another application. Furthermore, time sensitive information,

such as stock quotes, might need to be requested. As a result, the response

is not the same for each request, but changes dynamically [32, Sec. 1.].

“Java servlet is the foundation of the Java server-side technology, JSP

(JavaServer Pages), JSF (JavaServer Faces), Struts, Spring, Hibernate, and

others, are extensions of the servlet technology” [32, Sec. 1.]. They share the

advantages of the mature Java programming language: server- and

platform-independency, reusability, portability, and high performance [33].

The server-side Java stack below shows how the servlet’s components are

related to each other. The Java Virtual machine runs on top of the operating

system and serves as an environment for the Java Server. A Java application

can then use the facilities of the server as well as of the Servlet API [34].

Figure 3:Server-Side Java Stack [34]

A Java Server like Apache Tomcat provides the necessary run time

environment for the servlet. Additionally, it handles all networking services

and resources necessary, while also managing the life cycle of servlets [35].

It decodes and formats MIME-based requests and formats MIME-based

responses [36, Sec. 1.2.]. The Multipurpose Internet Mail Extension (MIME)

11

is used to specify the media type, subtype and encoding of data that has

been received in the body of a message. For example, types like application,

image or audio are defined [37, Sec. 1.].

A single process instance handles all request, increasing performance and

saving memory. Security is enhanced by the servlet being part of the web

server, and therefore inheriting its security measures [35]. The web server

can implement security restrictions based on the Java permission

architecture for the servlet’s environment. Jakarta Servlets of the Version

5.0 support HTTP/1.1 and HTTP/2.0. It is important to note that the server

can modify HTTP requests before and after the processing of the Servlet to

allow caching [36, Sec. 1.2.].

When creating a servlet, one can either extend the

jakarta.servlet.GenericServlet interface or the

jakarta.servlet.http.HttpServlet interface. The more specific

HttpServlet includes methods supporting the HTTP protocol like doGet,

which handles HTTP GET requests [38]. After being instantiated the servlet

first gets created with the init method, then handles all client calls with

the service method, and finally retires with the destroy method [39]. By

default, only a single instance is created for each servlet declaration [36,

Sec. 2.2.].

2.9. Jakarta Server Pages

“A JSP page is a text-based document that describes how to process a request

to create a response” [4, Sec. Overview].

Jakarta Server Pages are closely related to Servlets and are built based on

their specification [40]. The most common application of JSP pages is in the

form of HTML and XML content. They enable the usage of web

applications, servlet contexts, sessions, requests, and responses [4, Sec.

Overview].

“From a coding perspective, the most obvious difference between them is that

with servlets you write Java code and then embed client-side markup (like

HTML) into that code, whereas with JSP you start with the client-side script

12

or markup, then embed JSP tags to connect your page to the Java backend”

[40].

While HTTP is the default protocol for requests and responses, other

protocols are also acceptable, if the container supports them [4, Sec. 1.1.].

Before being requested by clients during the request phase, JSP’s need to

be translated by the container, creating a servlet class. This class is called

the JSP implementation class. This translation is performed once per page

and can take place at deployment time or once requested. After being

instantiated at request time, this class creates responses for incoming

requests. [4, Sec. Overview]. In short, after the translate phase is concluded

the JSP will be indistinguishable from any other servlet.

JSP’s can contain fragments written in a scripting language, which are

referred to as scriptlets [41].

Most significantly, JSP’s functionality can be extended by Tag Libraries.

They introduce custom actions, to be used manually or by Java

development tools. The tag handler is an instance of a Java class,

corresponding to a tag and implementing its functionality [42]. The

collection of Java classes that makes up a custom Tag Library can be

packaged in a .jar file.

The Tag Library Descriptor (TLD) is used to describe the Tag Library in

form of an XML file and uses the extension .tld. It allows JSP containers to

interpret pages using a tag library. Additionally, a TagLibraryValidator

class can be used to check whether a JSP page is valid according to a set of

expected constraints [4, Sec. 7.3.].

While Java is the default scripting language used in JSP, other languages

can be added using two different methods. Declaring them in the page

directives at the beginning of a page has the disadvantage that some

containers only support Java. Utilizing a tag library is beneficial since this

method is portable between containers. All JSP containers must support

the tag extension mechanism. Additionally, this approach allows using

multiple different scripting languages on the same page [43, p. 34].

13

2.10. Apache Tomcat

“Apache Tomcat is a long-lived, open source Java servlet container that

implements several core Java enterprise specs, namely the Java Servlet,

JavaServer Pages (JSP), and WebSockets APIs” [44].

In 1997 the American software developer James Duncan Davidson started

to work as an engineer for JavaSoft, which at the time was a part of Sun

Microsystems. While working on the Java Web Server he created a

reference implementation for the Java Servlet specification, called the Java

Servlet Web Development Kit [45]. In 1999 the project was donated to the

Apache Software Foundation and was thereafter called Tomcat. In 2005

Tomcat became a top-level Apache project to be managed by itself [46].

Tomcat refers to multiple components working together, mainly Catalina,

Jasper and Coyote.

“Catalina provides Tomcat's actual implementation of the servlet

specification; when you start up your Tomcat server, you're actually starting

Catalina” [47]. This is also the reason why Tomcat’s main directory is often

referred to as CATALINA_HOME [48]. The Java class Catalina not only provides

the servlet container’s main functionality, but is also responsible for its

configuration, security, and logging [47].

The Jasper JSP engine is used to implement the Jakarta Server Pages

specification. It compiles JSP’s into Java code to be used by Catalina as

servlets. It can detect changes in a JSP at runtime and compile them

immediately [49]. Therefore, changes by the user will be immediately

realized.

The Coyote HTTP/1.1 Connector enables Tomcat to work as a stand-alone

web server. It gets instantiated and listens for connections on a specified

TCP port number [50]. Without this class, a dedicated HTTP server like

the Apache HTTP Server would be required. As a matter of fact, Tomcat

can be connected to an Apache HTTP server by means of a connection

module [51].

Since Tomcat is often also referred to as a web server, it is important to

establish the difference between a webserver and a web container. A web

server is used to store and deliver web pages to requesting clients. To

14

accomplish this, the HTTP protocol is used, which also allows the

transmission of information from clients [52]. JSPs and Servlets are referred

to as web components, they are placed in the web container and can then

be used in an environment provided by the web container [4, Sec. 1.1.1.].

Therefore, every web container can be referred to as a web server, while not

every web server is a web container. Furthermore, a web container utilizing

the Jakarta Servlet API can be referred to as a servlet container.

2.11. Open-Source Software

Most of the software mentioned throughout this thesis is open source,

meaning that its source code is freely available for anyone to inspect,

modify and enhance. This approach not only allows control and security

but also the creation of a community [53].

“Open source projects, products, or initiatives embrace and celebrate

principles of open exchange, collaborative participation, rapid prototyping,

transparency, meritocracy, and community-oriented development” [53].

Open-source software is generally released under a license. Copyleft

licenses, like the GNU General Public License, allow the creation of

derivative works, but require them to be using the same license. In contrast,

permissive licenses allow the user to freely use, modify and redistribute the

software [54]. The Apache license is an example for a license that is

permissive.

2.11.1 The Apache Foundation

The Apache Software Foundation is a not-for-profit corporation

established in 1999. An all-volunteer board oversees over 350 open-source

projects and supports them with a framework for intellectual property and

financial contributions [55].

“The mission of the Apache Software Foundation (ASF) is to provide software

for the public good” [55].

The Apache Tomcat Software is released under the Apache License version

2.0 [56]. At the time of writing, in January 2021, the current version of the

15

Apache License is 2.0, which was approved in 2004. Most importantly,

software released under this license can be reproduced and used to create

derivates without paying royalties. To offer legal protection, the license is

revoked should an entity file a lawsuit claiming patent infringement by the

creator or any contributor [57]. All the examples created for this thesis are

licensed under the Apache License 2.0. Therefore, should the reader deem

them useful, free usage is encouraged.

2.11.2 The Eclipse Foundation, Jakarta Namespace

The Eclipse Foundation is a not-for-profit organization with over 275

members, focusing on open-source projects [58]. It was initially created by

IBM in the year 2001 [59].

“The Eclipse Foundation provides our global community of individuals and

organizations with a mature, scalable, and business-friendly environment for

open-source software collaboration and innovation” [58].

Until 2019, the Jakarta Servlets and the Jakarta Server Pages were officially

known as Java Servlets and Java Server Pages. This name change goes hand

in hand with the rebranding of Java Enterprise Edition (Java EE) to Jakarta

Enterprise Edition (Jakarta EE), the set of specifications under which the

Java Servlet specification was originally released. In the year 2017 the then

owner of Java Enterprise Edition, Oracle, decided to donate it to the open-

source Eclipse Foundation. On September 10, 2019 the first version under a

new name was released, Jakarta EE8. The release changed all the included

specifications names, including the Java Servlet, which was referred to as

Jakarta Servlet from this point onward [60].

While the Standard Edition of the Java Platform enables the development

and deployment of desktop and server applications, its Enterprise Edition

is focused on large, multi-tiered enterprise applications [61]. “The focus of

the Jakarta EE platform is not to bundle a bunch of unrelated APIs. The

purpose of Jakarta EE is to ensure that a variety of useful enterprise APIs

work in harmony” [62].

TomEE is a version of Tomcat, that builds on the standard edition, by

adding all the Jakarta EE API’s. Only a single of those API’s is required for

16

the web applications accompanying this thesis, namely Jakarta Mail. To

simplify, it has been added to the standard Tomcat version as a standalone

.jar file. Alternatively, TomEE could have been used instead [62].

Tomcat 10 was the first version to implement this change, which is reflected

in the naming of all primary packages [63]. To give an example, the cookie

class needs to be referred to as javax.servlet.http.Cookie in version 9 and

javax.servlet.http.Cookie in version 10.

This namespace change is directly related to this thesis, since at the time of

writing, in January 2021, the Apache Tomcat Software Version 10 was still

in its Beta phase. Nonetheless, to future proof this work, it is fully based on

Tomcat 10. Should the reader prefer the stable version 9, most components

should be near identical. Otherwise, the only difference is that, instead of

the examples found directly in the zip archive, the ones in the directory

ZIP_ARCHIVE/javax_for_Tomcat09 need to be used instead. They are

identical, except for the above-mentioned name changes. For more

information on the usage of Tomcat 9 please refer to the appendix: 9.3.
Tomcat 9

2.12. Putting it All Together

The Apache Tomcat Software is used to provide the necessary

infrastructure and to make web applications available. It handles all

incoming HTTP requests and outgoing HTTP responses. The conventions

and structure of Java web applications is used to create web applications,

with JSPs forming the core technology. The JSP contains custom tags,

holding code written in a scripting language, implementing the web

application’s functionality. These tags originate from one of two tag

libraries programmed by Rony G. Flatscher for BSF4ooRexx, using either

the BSF or the JSR 223 framework.

Scripts that are invoked (evaluated) this way are supplied with the implicit

objects normally available to a standard Java scriptlet inside a JSP. Most

notably request, response and out. [43, p. 35].

Even though many scripting languages can be used this way, ooRexx has

been selected as the scripting language of choice. The necessary script

17

engine, RexxScriptEngine, is made available by BSF4ooRexx, enabling BSF

and JSR 223 support [64, p. 5]. Additionally, BSF4ooRexx enables the

inclusion of countless external Java libraries.

Hence, the script runs on the server, generating dynamic content based on

the request sent by the user. This technique is also referred to as server-

side scripting. Even though the client is not required to support the

scripting language used, increased latency might be a disadvantage for

some applications [65]. After processing, the user receives a standard

HTML document that gets rendered by a web browser.

3. Apache Tomcat Fundamentals

The following chapter introduces the Apache Tomcat Software,

communicating all knowledge necessary to run the complementary

example web applications included with this thesis. At this stage, ooRexx,

BSF4ooRexx and Tomcat should be installed. Download links for the first

two components can be found in the appendix: 9.1.1. Software required

to begin, as well as detailed installation instructions for Tomcat: 9.2.

Tomcat Installation Guide

3.1. TOMCAT_HOME

The author uses TOMCAT_HOME to describe Tomcat’s main directory. The

figure below shows its contents.

18

Figure 4: TOMCAT_HOME Directory

TOMCAT_HOME\bin contains scripts in the form of .bat files. Mainly,

startup.bat and shutdown.bat which can be used to start and stop the

server.

TOMCAT_HOME\conf holds multiple files used to configure the software’s

properties. The server.xml file is used to change the initial server

configuration on startup, for example it points to external static resources.

The file web.xml is used to deploy and configure web applications. The files

in this folder serve as a default, for certain parameters to be overwritten by

a web.xml file specific to a web application if needed [66].

TOMCAT_HOME\lib contains .jar files that are shared among all web

applications. The files placed in the main directory’s lib folder are accessible

not only to all web applications but also to the Tomcat application itself.

Files that are necessary for the functioning of the software, like

catalina.jar and jasper.jar come preinstalled [67].

TOMCAT_HOME\logs contains log-files, useful for debugging and testing self-

written web applications. Particularly, for each day the server is run, a file

called tomcat10-stderr.yyyy-mm-dd.log is created, containing error

messages. This file is particularly useful to detect the cause of exceptions.

Also, it might prove useful to regularly delete old log files to quickly find

relevant entries. To make deletion possible the Tomcat server needs to be

shut down. For convenience, all files within the log folder can be deleted if

19

no longer needed, since the Tomcat Software will automatically recreate all

necessary files on the next startup.

TOMCAT_HOME\webapps is the directory where all web applications can be

found. Depending on the installation parameters chosen, this folder might

already come shipped with default applications.

TOMCAT_HOME\work is used by Tomcat for intermediate files during runtime.

For example, once a JSP is compiled, the result is placed here [68].

3.2. Deploying Web Applications

“Deploying your application means putting it on a Web server so that it can

be used either through the Internet or an intranet” [69].

To begin with, two demo web application shipped with this work needs to

be deployed and made accessible. There are two ways to accomplish this,

either the web app is deployed exploded or in the form of a web archive file.

Web Application Archives use the .war file extension and contain all

necessary files for a web project. Everything that is needed such JSPs, scripts

and the configuration files are contained in a single file. They are quite like

.jar files and can be create from the command line with the jar tool

included in the Java Development Kit. For example, the command jar -cvf

projectname.war * will create a web archive from all the files contained in

a directory [70].

The usage of .war files is especially convenient because they use the .zip

format [71]. Instead of using the command line, it is also possible to create

a simple .zip archive and giving it the .war file extension. To view its

contents, .war files can also be unpacked by a compression software, for

example with 7-zip.

Lesson Learned: When web applications are shipped as .war files, all

required files are expected to be included in the archive, special attention

needs to be given to .jar files.

After placing a .war file in TOMCAT_HOME\webapps, the Software will

automatically unpack the files in a new folder of the same name on startup.

20

Afterwards, all files can be conveniently viewed. Once a .war file is

unpacked it is considered as exploded.

When web applications are developed, they are usually deployed exploded.

A folder in the webapps directory is created and the files inside are modified

without the need to compress them into a single file.

Furthermore, all web servers compliant with Jakarta EE, handle web

applications the same way, allowing identical .war files to be used with

different Java webservers, like IBM WebSphere. They all handle the .war

files as an independent application, using its main directory as a virtual

root. Therefore, any concepts used for web application development with

Apache Tomcat can be directly transferred to other Java web servers [72].

While .war files contain .jar files, .ear files contain multiple .war files.

This format used by the Jakarta EE platform to create application packages

[73].

At this point the reader is encouraged to copy the .war files helloworld.war

and treeshop.war to TOMCAT_HOME\webapps. While the web application called

helloworld will be the subject of the next sections, treeshop will be

discussed at a later stage. The files can be found directly in complementary

archive.

3.4. Starting Tomcat

There are multiple ways to start the Apache Tomcat software. The

previously mentioned scripts startup.bat and shutdown.bat

TOMCAT_HOME\bin exist for all platforms but might have the file extension .sh

instead on different operating systems.

On the Microsoft Windows (Windows) operating system the Apache

Commons Daemon Service Manager, which creates a taskbar icon, can be

run from the start menu entry Monitor Tomcat. It can be found in the folder

Apache Tomcat 10.0 Tomcat10. It offers a convenient way to configure, start

and stop the server.

21

Figure 5: Apache Commons Daemon Service Manager

The reason why Tomcat cannot be started by conventional methods lies in

its nature as a service. On the Microsoft Windows operating system,

Windows services run in their own Windows session and are used for

applications that require long-running functionality, without interfering

with other users on the same machine. Additionally, they allow a different

security context [74].

Therefore, yet another way to control the status of the Apache Tomcat 10

can be accessed by typing services.msc in the Windows Powershell or

command prompt. A list of all services will be displayed. By right-clicking

on Apache Tomcat 10.0 Tomcat10, the server can be started and stopped.

Once running, Tomcat can be reached from the URL:
http://localhost:8080/

Localhost is a top-level domain, referring to the current computer and is

interchangeable with the Internet Protocol address (IP address) 127.0.0.1.

The number 127 at the beginning of the address triggers a so-called

loopback; the request is not forwarded to the internet but handled by the

local computer instead. This feature is mainly used by administrators for

testing purposes [75].

Ports are interfaces on a computer to which other devices can connect for

communication purposes. The ports are numbered starting from 0 to 65535.

Ports numbered 0 to 1023 are also called well-known ports, which are

reserved for common services like the HTTP protocol, which has port 80

assigned to it [76]. During the Tomcat installation process, the HTTP

connector port got assigned to 8080. Here Tomcat’s Coyote component is

listening for incoming requests.

In case the reader has defined a different port during installation, the URL

needs to be changed accordingly. Differences concerning the usage of

Tomcat 9 are in name only.

http://localhost:8080/

22

3.5. Tomcat Manager

If it has been installed, the Tomcat Manager App can be accessed from:
http://localhost:8080/manager/html

When started, the application asks for the username and password given

during the installation.

Among other features, this web application gives an overview of all installed

web applications, allows them to be deployed, undeployed and reloaded,

all without necessitating a restart [77]. This is particularly useful for

production environments where multiple people work together.

4. Introducing web applications /helloworld

Thus, after introducing the fundamentals of working with Tomcat, the web

pages contained in the application helloworld will introduce the reader to

web application development.

At this point, the file heloworld.war, should have been placed in

TOMCAT_HOME\webapps. After restarting the software, the web

archive’s contents are exploded automatically. The folder structure directly

influences the path from which pages are accessed: Files in the directory

TOMCAT_HOME\webapps\helloworld, can be accessed from the URL:
http://localhost:8080/helloworld

The main directory of helloworld, found in the directory

TOMCAT_HOME\webapps\helloworld is referred to as the application’s context

path [71]. To allow generalization, this thesis uses the path WEBAPP\ to refer

to this directory.

4.1. Web Application Architecture

Some elements are common to all Java based web applications. The

directory WEBAPP\WEB-INF contains all resources necessary to run the

application. Typically it holds.jars, .tlds and the web.xml file. Notably,

these resources are not made accessible to a web user [78].

http://localhost:8080/manager/html
http://localhost:8080/helloworld/

23

The web.xml file contains the Web Application Deployment Descriptor. It

is used by the JSP container to gather general configuration information [4,

Sec. 3.1.]. The main web.xml file can be found in TOMCAT_HOME\conf, while

the version specific to a web application is located at WEBAPP\WEB-INF. The

latter is used in case deviating or additional configuration parameters are

required. [79]. For example, it holds information used to name and describe

the web application in the Tomcat Manager application. At a later stage,

this file will be used to add configuration parameters.

To minimize potential errors and to showcase the interchangeability, both

Tag Library Descriptor files for the JSR 223 (script.jsfr223.tld) as well as

the BSF (script-bsf.tld) tag library were placed in WEBAPP\WEB-INF folder.

The directory WEBAPP\WEB-INF\lib contains Java .class files in .jar

archives. Like the web.xml file, the contained libraries are specific to the web

application.

For the web applications shipped with this thesis to function, two Java

Archives are always needed. First, the file jakarta.ScriptTagLibs.jar holds

the actual BSF and JSR 223 tag libraries. The bsf4ooRexx-v641-20201124-

bin.jar includes the Bean Scripting Framework, the bridge between Java

and ooRexx.

The leaves the question, whether to place the classes necessary for a web

application in TOMCAT_HOME\lib or WEBAPP\WEB-INF\lib. For the application

helloworld, the author has chosen to package all necessary .jar files in the

WEBAPP\WEB-INF\lib directory.

Generally, the benefit of not requiring the user to modify his Tomcat

installation outweighs the redundancy of having multiple identical .jar

files. The result are web applications that run simply after being placed in

the webapp folder. Nonetheless, other factors complicating this issue will

be discussed later.

4.2. Introducing Jakarta Server Pages /helloworld/helloworld.jsp

The listing below shows the contents of the document helloworld.jsp. At

first glance, the Jakarta Server Page is almost identical to a standard HTML

24

page. By interweaving static and dynamic content the JSP gets transformed

into a Rexx Server Page.

<%@ page session="false" pageEncoding="UTF-8" contentType="text/html; charset=UTF-
8" %>
<%@ taglib uri="/WEB-INF/script-jsr223.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>hello, world</title>
</head>
<header>

<s:script type="rexx">
USE ARG request, response, out

greeting = "Hello, world! (Sent from Open Object Rexx)"
out~println(greeting)
</s:script>

</header>
</html>
Listing 1: helloworld.jsp

4.2.1. JSP Directives

All JSPs share a common set of characteristics and begin with the so-called

directives, containing messages to the JSP container. All directives follow

the syntax: <%@ directive {attr="value"}*%>. The three existing directive

types are page, taglib and include [4, Sec. 1.10.].

The page directive is used to communicate page dependent properties to

the JSP container. It can occur multiple times and at any position in the

document, except for the pageEncoding and contentType attributes, which

are expected to appear at the beginning. Attributes are limited to a single

instance, except for import and pageEncoding [4, Sec. 1.10.1.].

To begin with, the session attribute of the page directive is used to identify

a user across multiple requests. The identification is made possible by

means of a cookie, or alternatively by rewriting the URL [80]. No specific

session cookie is created for this simple web page with the only goal of

displaying information.

The pageEncoding attribute determines the encoding of the JSP itself, while

the contentType attribute defines the MIME type and character encoding of

25

the response. Additionally, the character encoding can be defined by the

CHARSET attribute [4, Sec. 1.10.1.].

Encoding is particularly important for webpages since they might contain

text in many different languages. Characters on computers are stored as

bytes which need to be mapped to characters using a specific code. The

characters in this context are grouped into character sets. Many different

character sets exist for different purposes and languages; for the use case of

creating a web page, the Unicode UTF-8 is recommended. UTF-8 includes a

multitude of characters, for almost any possible situation, making it

unnecessary to switch or convert between encodings throughout a project

[81]. Furthermore, it ensures maximum compatibility with different

languages. If the pageEncoding is not explicitly declared, ISO-8859-1 will be

used instead [4, Sec. 4.1.1.].

In the second line, the taglib directive declares that a tag library is used to

extend the page’s functionality. The uri attribute points to the Tag Library

Descriptors exact location in the directory WEBAPP\WEB-INF. The declared

prefix attribute is used to indicate the usage of one of the library’s custom

actions throughout the document [4, Sec. 1.10.2.].

The include directive is used to insert text, data, or code of a specified

resource at JSP translation time [4, Sec. 1.10.3.]. In this example the directive

has been omitted.

4.2.2. JSP Content

The <!DOCTYPE html> declaration informs the browser about the nature of

the document and that its author is following standard practices. Having

the doctype declaration at the beginning of a web page is good practice and

a sign of quality [82]. Similarly, it is a good idea to declare the charset as

UTF-8 once again. The previously charset attribute declared in the

directives is sent in the HTTP response header. Should the server

configuration change or the page gets saved locally, the HTTP response

header would be missing [83]. For this situation, the charset gets declared

again. Even though, UTF-8 is the standard charset that will be applied to any

26

HTML5 page in case it is omitted, the web user’s browser’s behavior is not

guaranteed, especially if an older browser is used [84].

Afterwards, scripting code is used to display a message in the document’s

header. The dynamic content starts with the previously declared taglib

prefix s. After the double colon, the tag script indicates the start of a script.

The attribute type defines the scripting language used, in this case Open

Object Rexx [85].

Alternatively, many other scripting languages could be used instead. For

example, the addition of the file jython.jar would allow the insertion of

code written in the Python programming language in place of ooRexx [86,

p. 19].

First, the objects request, response and out are fetched. These objects are

part of the implicit objects, nine of which are created by the JSP engine

during translation phase [87]. Invoking scripts by means of the tag libraries

developed by Rony G. Flatscher, supplies the implicit objects automatically,

merely requiring them to be fetched. With ooRexx, this is done with the

instruction USE ARG [85].

The requests object provides data the client has transmitted when initially

requesting the page, usually it originates from forms. The response object

modifies or delays the response that is sent back. The third fetched object

out, is responsible for writing content to the HTML page the user receives.

Furthermore, it enables the formatting of messages [35].

After fetching the implicit objects, the script defines a greeting string and

stores it in the variable greeting. The out object refers to an instance of the

Java class JspWriter. Next, the println method is used to print the

characters and terminating the line afterwards [88]. As a result, the greeting

previously defined will be displayed in the HTML page header. The closing

tags conclude this first script. Since no HTML tags have been given, the

printl method prints the sentence in verbatim without any formatting

applied.

The following figure showcases the HTML document the user receives

when requesting helloworld.jsp.

27

Figure 6: hellworld.jsp in Web Browser

As can be seen, the resulting page looks like a standard web page, the

content generated by the script is indistinguishable from the static HTML

parts.

Listing 2: helloworld.jsp HTML Source Code

Lesson Learned: For URLs, upper- and lower-casing matters, it needs to

reflect the JSP document’s exact name.

From this point onwards, the contents of WEBAPP\WEB-INF, as well as the

page directives and HTML code up to the header can be copied and reused

as standard building blocks. The next example page builds on the first.

4.3. BSF Taglib, Styling, Expressions /helloworld/helloworld_ext.jsp

<%@ page session="false" pageEncoding="UTF-8" contentType="text/html; charset=UTF-
8" %>
<%@ taglib uri="/WEB-INF/script-bsf.tld" prefix="s" %>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<link rel="stylesheet" href="css/treeshop.css">
<title>hello, world</title>
</head>
<header>

<s:script type="rexx">

28

USE ARG request, response, out

greeting = "Hello, world! (Sent from Open Object Rexx)"
SAY '<h1>'greeting'</h1>'
</s:script>

</header>
<body>

<p>The time right now: <s:expr type="rexx">TIME()</s:expr></p>

<s:script type="rexx">
USE ARG request, response, out

SAY '<p style="color:blue" !important>'pp("This paragraph is made possible by the
BSF taglib")'</p>'

/* Note: when using the BSF framework we need to require BSF.CLS in each script
and expression,
 if we need to access its public routines or public classes */
::REQUIRES "BSF.CLS" -- make sure the Java bridge is there
</s:script>

</body>
</html>
Listing 3: helloworld_ext.jsp

Compared to the first page, this document’s head includes the link tag. It

is used to extend the document with additional resources. The rel

attribute, standing for relation, is communicating the nature of the linked

resource [89]. A stylesheet of the type .css, which can be found by the URL:

css/shop.css has been added. This path is relative, referring to the location

of the page. Therefore, the file is found in: helloworld/css/treeshop.css. It

is also possible to utilize an absolute path, by giving a full URL. However,

relative paths are best practice, should the domain or computer change, all

paths would need to be changed otherwise [90].

Moving on, the first script block has been both simplified and extended at

the same time. The simplification is achieved using the ooRexx SAY

instruction which, thanks to the used tag library, results in the same result

as the println method. Additionally, the line demonstrates how HTML tags

can be used to format outputs from scripting languages. First the tag gets

printed in single quotation marks, which are closed to insert the previously

defined variable greeting. Afterwards, the end tag is printed. This approach

allows weaving together outputs and HTML tags, to generate dynamic

29

content. The result, that gets sent to the end user will look like simple,

static HTML code, leaving no trace of ever containing scripting code.

Listing 4: helloworld_ext.jsp HTML Code

Lesson Learned: This approach requires extra care when using quotation

marks. Since double quotation marks are needed to specify the attribute

values, the SAY command uses single quotes to enclose the message.

While for other scripting languages the out object in combination with the

println method is a universal way to write HTML content to the JSP, the

demo pages will use the SAY instruction from this point onwards instead.

In addition to script, the expr tag can be used to fetch the result of an

expression defined in a scripting language [85]. In the example the body of

the HTML file includes a paragraph after the script has been concluded. It

is used to demonstrate how the expression tag is used to intertwine the

output of the ooRexx time() function with standard HTML code. The

function returns a timestamp which is consecutively displayed on the web

page. The output reflects the point in time, at which the page was originally

generated. Since HTML is static by nature, expressions allow quick

enhancements with dynamic content.

Next, the scripting tag is used once again. The first thing to note is the style

attribute, indicating a CSS rule by means of inline styling.

The rule consists of the declaration color:blue. When looking at the

external stylesheet shop.css, the selector for a paragraph, p, already exists.

For inline styling, the selector can be omitted. Overall, the CSS 2.1 version

has over 90 properties, allowing in-depth customization of a web page,

including fonts, tables, and backgrounds [91, Sec. 2.1.].

The web page helloworld_ext.jsp therefore has two different style sources

which might conflict each other. A cascading order is used to determine

the applicable value, which also gave the stylesheet its name. Since the

30

declaration in the HTML document is declared !important it takes

precedence.

Lesson Learned: When creating and changing style elements in an external

.css file, the changes might not be immediately reflected on the actual web

page. The reason being, that the web browser will usually cache front end

resources. The hard refresh feature might prove useful by clearing the cache

and reloading all resources. For example, a hard fresh can be performed by

the button combination CTRL-Shift-R when using Firefox on Windows

[92].

In contrast to the first example, this one uses the BSF tag library. Most

importantly, when using this taglib, ::REQUIRES “BSF.CLS” needs to be

included at the end of a script. Without its addition, public routines, and

classes of the BSF4ooRexx framework will not be functional. When using

the JSR 223 taglib the directive can be omitted. The BSF.CLS which is part of

BSF4ooRexx is used to define public routines and classes. For example,

public routines offer functions such as the creation of Java Arrays, while

public classes such as BSF_PROXY enable sending ooRexx Messages to Java

proxy objects [93]. Therefore, to avoid inexplicable errors or missing

content, it is good practice to always include this directive when using the

BSF taglib.

For the usage with ooRexx, the choice of taglib hardly matters. Nonetheless,

both the BSF and the JSR 223 tag library exist to ensure maximum

compatibility and the ability to run programs without making any changes.

Programming languages like Groovy internally prefer the BSF framework,

while older languages might not offer JSR 223 at all.

When looking at the text that is printed, the BSF4oorexx public function pp

is used to place the text inside square brackets. Otherwise, all the difference

in look and feel stem from the applied stylesheet.

31

Figure 7: helloworld_ext.jsp in Web Browser

4.4. Welcome Files /helloworld/index.html

This is a good point to mention welcome files. If no specific page is

requested, tomcat redirects the user to a welcome file. For example, the

URL: http://localhost:8080/treeshop/helloworld opens the welcome

page for the helloworld web application. A welcome file can be configured

for the main directory, as well as all subfolders. The server will first look for

a welcome file declared in the web application’s web.xml file. It will check

for the existence in the following order: index.html → index.htm →

index.jsp [94].

4.5. An Introduction to Cookies /helloworld/lastvisit.jsp

In previous parts of this thesis the HTTP protocol and its stateless nature

have been discussed. Cookies are a solution to the problem that different

HTTP requests are considered separate from each other. Most website

features that are taken for granted, like shopping carts, are enabled by

cookies.

To maintain state, the server sends information in the Set-Cookie HTTP

response header. When the user contacts the same server at a later point,

the previously received cookie data gets sent in the Cookie HTTP request

header. By changing the path and domain attributes, the scope of a cookie

can be altered. By default, the cookie only gets sent to exact path from

http://localhost:8080/treeshop/

32

where the web page has been requested from. Each cookie is represented

by a cookie-pair consisting of cookie-name and cookie-value. Should the

user agent receive a cookie with the same cookie-name, domain-value and

path-value as an existing cookie, the stored data gets replaced with the

newly received values [95, Sec. 8.6.].

Furthermore, cookies include a Max-Age attribute; after the stated number

of seconds has passed, the cookie gets deleted. Similarly, cookies can

include an Expires attribute, which indicates the time and date at which

the cookie expires. Should the cookie have both the Max-Age and the Expires

attribute, the Max-Age attribute takes precedence. The cookie’s Domain

attribute indicates the hosts it gets transmitted to [95, Sec. 8.6.].

While the first parts of the page lastvisit.jsp are identical to the previous

example, the document’s body contains code utilizing cookies.

<s:script type="rexx">
USE ARG request, response, out

lastVisit = .nil
allCookies = request~getCookies()

IF allCookies \= .nil THEN DO singleCookie OVER allCookies -- iterate over cookies
 IF singleCookie~name == "lastVisit" THEN lastVisit = singleCookie~value
END

IF lastVisit == .nil THEN SAY '<p>This is your first visit!</p>'
 ELSE SAY '<p>Your last visit was at: 'lastVisit'</p>'

/* Create/Overwrite cookie with the current time */
cookie = .bsf~new("jakarta.servlet.http.Cookie","lastVisit",time())
cookie~setMaxAge(60*60*24) -- the cookie will expire after 1 day
response~addCookie(cookie)
</s:script>
Listing 5: lastvisit.jsp

The method getCookies is used to gather all cookies that are included in

the request. The method results in an array of all transmitted cookies or

.nil in case no cookies exist [96]. This array is assigned the variable

allCookies.

If cookies are present, a DO OVER loop iterates over all the cookies contained

in the newly created array. It is necessary to first check for the existence of

cookies, since a .nil value for allCookies would result in an error. If a

cookie with the name lastVisit is present, its value will be assigned to a

variable of the same name. In this case, short message about the users last

33

visit will be displayed, otherwise he will be informed that this is his first

visit.

Afterwards, a cookie is created by utilizing the class

Jakarta.servlet.http.Cookie. A name and value are given with the

constructor [97]. In the final step the method setMaxAge is used to define

the cookie’s expiration date. Since this value is given in seconds, a small

mathematical operation is used to define a maximum age of one days. After

the cookie is created, the addCookie method is used to add the cookie

named lastVisit to the response that gets sent to the client. As value, the

built in Open Object Rexx function time() is used to store a timestamp

corresponding to the exact moment in time when the code is executed [98].

For all future visits, this timestamp will be displayed and afterwards

updated. Unless the visits are further apart than one day, after which the

cookie will be automatically deleted.

Figure 8: lastvisit.jsp in Web Browser First Visit

34

Figure 9: lastvisit.jsp in Web Browser Consecutive Visit

Although simple, this third nutshell example might prove useful; it

becomes clear how cookies are created, transmitted, and accessed.

4.6. Combining User Input and Cookies /helloworld/greeting.jsp

The next example shows how information provided by the user can be

stored and reused with a cookie. A visitor is asked for his name, for the web

page to be able to personally greet him in the future. Again, the relevant

code can be found in a scipt located in the document’s body.

<s:script type="rexx">
USE ARG request, response, out

allCookies = request~getCookies()

username = .nil -- set as nonexistant to begin
IF allCookies \= .nil THEN DO singleCookie OVER allCookies -- iterate over cookies
 IF singleCookie~name == "username" THEN username = singleCookie~value
END

IF username == .nil THEN DO
 SAY '<p>Hello, what is your name?</p>'
 SAY '<form>'
 SAY '<label for="username">Username:</label>'
 SAY '<input type="text" name="username" required>'
 SAY '<input type="submit" value="Ok">'
 SAY '</form>'
END
ELSE DO
 SAY '<p>Welcome back, 'username'</p>'
END

IF request~getParameter("username") \= .nil THEN DO
 cookie =
.bsf~new("jakarta.servlet.http.Cookie","username",request~getParameter("username")
)
 cookie~setMaxAge(60*60*24) --The cookie will expire after 1 day
 response~addCookie(cookie)
 response~sendRedirect(request~getRequestURI()) -- refresh page
END
</s:script>
Listing 6: greeting.jsp

After fetching the implicit objects and any cookies attached to the request,

the script first checks whether a cookie called username is existent or not.

Should none exist, a form is generated asking the user to input his name.

Since no submission method is declared, the default method get is used,

appending the data to the URL. The action attribute is used to define the

35

processing agent [99, Sec. 17.13.]. To clarify, here the web page is given, to

which submitted the data is sent. Since this is a single page application, the

form data should be sent to the page itself. For HTML5 it is sufficient to

simply omit the action attribute to achieve this. HTML4 on the other hand,

requires a value for the action attribute to function [100].

Lesson Learned: In HTML, elements like input type=”text” should always

be accompanied by a label. This will help users who use screen readers or

have trouble clicking on small fields [101].

To avoiding unexpected behavior and potential malfunctions it is

important to design a web page in a way to make common mistakes

impossible. One such scenario would be a user not entering his name at all,

for example by prematurely submitting the form. This scenario would

result in an awkward greeting message, without any name given. Avoiding

this can be done without any additionally code in a simple but elegant way.

The required attribute can be given for input types such as text, url, email

or password, only allowing forms to be submitted if the field has been filled

[102].

Figure 10: greeting.jsp in Web Browser First Visit

Like any other program, all code is executed top to bottom. The last block

of code is activated, should the user submit the previously generated form.

Once the form is submitted the user is redirected to the same page and the

values entered are contained in the request. The method getParameter is

used to fetch this information. This name for the parameter has been

previously declared inside the form using the name attribute.

36

Only if the page is accessed by means of a form submission, the request will

contain the parameter username. In this case, the IF loop at the end of the

program is activated and a cookie is created. Finally, the sendRedirect

method of the response object is used to refresh the page. This is

accomplished by fetching the current page address with the getRequestURI

method. Since the request now contains a cookie called username, the form

and cookie creation are skipped, and the personalized greeting displayed

instead.

Figure 11: greeting.jsp in Web Browser Consecutive Visit

4.7. Deleting Cookies, External Scripts /helloworld/greeting_ext.jsp

The next example page greeting_ext.jsp builds on the previous one,

adding a logout button to demonstrate how the previously entered name

can be removed again.

At first glance the page looks almost identical, yet the structure has been

improved. Depending on the existence of a cookie containing a username,

either a login form or a logout button is displayed. The HTML code to

generate those components is stored in a ::RESOURCE directive, which can

be found at the bottom of the script.

::RESOURCE logoutButton
<form>
 <input type="hidden" name="logoutButton" value="1">
 <input type="submit" value="Logout">
</form>
::END
Listing 7: greeting_ex.jspl ::RESOURCE logoutButton

A ::RESOURCE contains an unlimited number of strings up until the ::END

directive, which are stored in a Stringtable. The name given to the resource

37

serves as an index, in this case, logoutButton, for which all the lines given

are stored in an array. Afterwards the entries are fetched with the

environment symbol .RESOURCES and the given name ~logoutButton [103, p.

3]. This feature of ooRexx can prove particularly useful for reusing HTML

building blocks. Another benefit of this feature is the ability to effortlessly

write HTML code without quotation marks.

Additionally, this example highlights how an input of the type hidden is

used to attach data to a request. After the button is clicked, the request will

include the parameter logoutButton with the value 1 attached. Essentially,

information about the user’s previous actions are transmitted, enabling

state without utilizing cookies.

With this newest addition the web page has four possible behaviors,

depending on the information attached to the request. In case a cookie

containing a username is present a personalized greeting is displayed,

otherwise the user will be asked to input a name.

Should the request indicate that the user has just filled the form or wishes

to logout, a cookie needs to be either created or deleted. While the first two

behaviors are programmed directly in the JSP, the latter are implemented

by an external script.

The following line of code adds the external script to the body of the

document:

<s:script type="rexx" src="code/logout.rex" cacheSrc="false" />
Listing 8: greeting_ext.jsp src Attribute

The linked script logout.rex is stored in the directory helloworld\code. The

script tag’s src attribute allows the addition of an external file, containing

scripting code in the specified language. Like the addition of a .css file, the

path is relative. Additionally, the cacheSrc attribute is set to true. If a web

page is still under development, it is highly recommended to set this

attribute to false, preventing the file from being cached and instead

rereading it each time. If the attribute is omitted, it is set to true by default.

This results in the caching of the file, necessitating a full server restart for

changes to be reflected on the JSP [85].

38

Additionally, multiple optional attributes for the script and expr tags are

available, mainly for the purpose of debugging. The sample web application

that comes included with the tag libraries, Jakarta.demorexx (see download

links at the beginning), contains examples showcasing these features.

USE ARG request, response, out

IF request~getParameter("username") \= .nil THEN DO
 cookie =
.bsf~new("jakarta.servlet.http.Cookie","username",request~getParameter("username")
)
 cookie~setMaxAge(60*60*24) -- the cookie will expire after 1 day
 response~addCookie(cookie)
 response~sendRedirect(request~getRequestURI()) -- refresh page
END

IF request~getParameter("logoutButton") \= .nil THEN DO
 removerCookie = .bsf~new("jakarta.servlet.http.Cookie","username","") --
overwrite existing cookie
 removerCookie~setMaxAge(0) --The cookie will expire immediately
 response~addCookie(removerCookie)
 response~sendRedirect(request~getRequestURI()) -- refresh page
END

::REQUIRES "BSF.CLS" -- make sure the Java bridge is there
Listing 9: logout.rex

Just for any other script, the implicit objects are made available to the

external script. The first IF loop contains the previously used code to store

a username in a cookie. Should the request contain any value for the

parameter logoutButton, the second IF loop is activated. Since there is no

specific method to delete cookies, instead a new cookie with the same name

and an empty value is created to set its maxAge to zero [104]. By adding this

cookie to the response, the existing cookie is being replaced and the page

gets refreshed afterwards. The maxAge attribute results in the cookie being

deleted after zero seconds have passed. The user is then presented with the

previous page that contains the form to fill in a username.

While the page would still function, should the tag referring to an external

script be at a different position, it has been placed at the beginning of the

body on purpose. First, placing it inside the document’s head might seem

intuitive, but could easily result in it being overlooked. Afterall, the first

lines of web applications, might consist of copy and pasted building blocks,

making modifications inconvenient. Since the page is executed like any

other program, from top to bottom, placing it at the end of the body might

39

result in unnecessary loading times. If any of the two IF loops are activated

the page is refreshed, rendering the creation of other parts useless.

5. Database Connection

More sophisticated web applications require access to a persistent data

source and the ability to freely add, delete and modify information. The

separation of data and functionality offers a high flexibility and the chance

to improve and update components separately. The ability to easily backup

critical data is also a requirement for most operations. The following

chapter describes the components necessary to connect a web application

to a database. Afterwards, the configuration steps required are

demonstrated.

5.1. Java Database Connectivity

In general, the reader may use any database management system of his

choice, the only requirement being the availability of the Java Database

Connectivity (JDBC) API.

JDBC is used to connect to a database, issue queries and commands, and to

handle result sets. It can be implemented for both client-side and server-

side connections. In a first layer, the Java application communicates with

the JDBC manager through the JDBC API. Afterwards, in a second layer, the

JDBC manager communicates with the database driver [105].

Each time a user connects to the database, resources are committed to

creating, maintaining, and closing the connection. To allow a high number

of users simultaneous and responsive access, the connections can be pooled

and reuses by means of connection pooling. Instead of closing and

reopening connections for every request, the connections are cached and

consecutively reused. For example, each PostgreSQL connection can take

up to 1.3 megabytes in memory, multiplied by the number of connections,

this number can easily skyrocket [106].

40

“It lets your database scale effectively as the data stored there and the

number of clients accessing it grow. Traffic is never constant, so pooling can

better manage traffic peaks without causing outages.” [106].

Nonetheless, connection pooling can result in problems, if handled

incorrectly. A so-called database connection pool leak can occur if a web

application does not explicitly close objects related to the database

connection, resulting in those resources being unavailable and a failure of

the data connection [107].

5.2. Java Naming and Directory Interface

In many cases applications utilize different services, provided by different

components. For the given use case, a web application needs to find a

database. The Java Naming and Directory Interface (JNDI) allows for

different components to find each other.

Especially for distributed system, naming services are of great importance.

Innovations like powerful microprocessors, high-speed computer networks

and the miniaturization of computer systems have made distributed

systems a possibility. Multiple autonomous computing elements are

working together, while appearing as a single coherent system to the user

[108, pp. 967-968]. For example, it might be plausible for the web

application and the database to be running on different machines.

Names are used to refer to an entity, which can be practically anything, for

example it could be a host or a file. Those entities can be then used to

perform operations on them. Each entity has one or multiple access points,

which are a special kind of entity. Their name is called an address. For

example, a host, running a webserver is an entity whose access point is a

combination of IP address and port. Since addresses are usually not

readable in a human friendly way and might change over time names are

preferred [109].

Not only offers JNDI a single location for programs to find resources, but it

also provides a common interface to existing naming services. Additional

to naming, JNDI also offers directory service, which manages the storage

and distribution of shared information [110].

41

6. E-Commerce Example /treeshop

From this point onward, all examples will be based on a fictional company,

selling trees to be planted in the name of a buyer. A webpage has been

created to sell their products, including the ability for users to login and

access a shopping cart. Furthermore, administrators of the web site can add

new products and send promotional e-mails to customers. All content will

be dynamically created according to entries in a database.

The data structure is kept minimalistic on purpose, only containing three

tables with basic data. One to hold the products, another for the customers

and a cart to connect them, realizing a many-to-many relationship. The

following Entity-relationship model is representative for the necessary

database entries:

Figure 12: Entity-relationship Model Database

6.1. Setup

Highly Recommended: All setup steps are summarized to be viewed and

copied from the URL: http://localhost:8080/helloworld/support/

For the examples to function the user is required to perform three

configuration steps. First, Tomcat’s configuration needs to be changed to

enable the server to serve static files, like pictures. Then, a database

management system needs to be installed and set up. Finally, two .jar files

need to be copied to TOMCAT_HOME\lib.

http://localhost:8080/treeshop/support/

42

6.1.1. Serving Static Content

In general, files can be served directly by a web application using the

DefaultServlet. But, since web applications are often deployed from .war

files, any changes made, would require redeployment [111]. Additionally,

between redeployments, files might get lost.

Since the shopping website is intended to keep functioning, even if new

products are dynamically added, this approach would not work. Later

examples will introduce a way to add new products, including pictures, to

the database. These pictures are to be stored in a directory outside of the

web application, with their path stored in the database.

To enable Tomcat to serve them and any other static content like

stylesheets or HTML pages, some extra configuration steps are necessary.

The file server.xml is can be found in TOMCAT_HOME/conf. The <host>

element can be found at the bottom of the document and needs to be

extended with the following line: <Context docBase="C:\Program

Files\Apache Software Foundation\Tomcat 10.0\files\" path="/files" />

 <Context docBase="C:\Program Files\Apache Software Foundation\Tomcat
10.0\files\" path="/files" />
 </Host>
 </Engine>
 </Service>
</Server>
Listing 10: server.xml Context

Docbase is used to indicates the directory from which static files are read

from. For this purpose, a new folder called files needs to be created in the

main Apache Tomcat directory. Generally, the direct path to any folder on

the computer running Tomcat can be given. TOMCAT_HOME has been chosen,

since it is assumed that all readers have a folder with the exact or at least

similar path.

Furthermore, the path attribute is used to define the URL that files will be

made accessible from. After the changes have been saved, any files placed

in the files folder will be accessible from the URL:

http://localhost:8080/files/Maple.jpg [111]. This path is also used by the

following examples to load pictures from.

http://localhost:8080/files/e

43

The directory of the complementary archive ZIP_ARCHIVE\supportfiles

contains folder named files that has already been set up with six sample

product pictures. For the page to be properly displayed it is recommended

to copy this folder to TOMCAT_HOME.

6.1.2. Database Configuration

For the web application to function, the database needs to hold three

tables, containing specific columns. The appendix contains detailed

instruction starting from downloading the software to adding six example

products: 9.4. PostgreSQL

6.1.3. Tomcat’s Handling of .jar Files

By default, Tomcat creates four class loaders, while ignoring the CLASSPATH

environment that is used by standard Java environments. The loading of

classes also slightly differs from what is standard practice for Java, where

classes are in a parent-child relationship to each other [112].

In the default configuration of Tomcat, the class loader on top of the

hierarchy is called Bootstrap and loads classes provided by the Java Virtual

Machine and the extensions directory of the Java Runtime Environment.

Next, the WebappX class loader makes classes available to a specific web

application. To accomplish this, it looks for classes located in the

directories WEBAPP\WEB-INF\lib and WEBAPP\WEB-INF\classes. Next the

System class loader loads classes required to initialize Tomcat as well as

classes for logging and the Apache Commons Daemon project. Only then,

the Common class loader loads classes from TOMCAT_HOME\lib [112].

Systemwide, the BSF4ooRexx library is only loaded once. Placing it in

multiple WEBAPP\WEB-INF\lib directories will result in it being requested

multiple times and the scripting content not working. Only the first

application using it will function normally. Therefore, the bsf4ooRexx-v641-

20201217-bin.jar needs to be placed in the TOMCAT_HOME\lib directory.

Additionally, it is recommended to place all JDBC related .jar files in the

TOMCAT_HOME\lib directory as well. This is due to a broken service provider

44

mechanism, which is supposed to enable the drivers to announce

themselves without specific registration. Tomcat’s JRE Memory Leak

Prevention Listener fixes this issue by loading all drivers on server startup.

If the .jar file is placed inside the web application though, the listener will

not be able to find the driver. Instead, it will be loaded by the first web

application requiring it. This approach can lead to various errors and

unexpected behavior [107].

To summarize the files postgresql-42.2.18.jar and bsf4ooRexx-v641-

20201217-bin.jar need to be copied from the ZIP_ARCHIVE/supportfiles

directory to TOMCAT_HOME\lib. Additionally, should the reader wish to

keep using the helloworld application, it is recommended to delete the file

bsf4ooRexx-v641-20201217-bin.jar from helloworld\WEB-INF\lib. It has

originally been included to provide an easier introduction.

6.2. Reading Data /treeshop/productlist.jsp

For database access to function, the webapp’s WEBAPP\META-INF directory

needs to contain a file called context.xml. This context is used to specify

additionally required configuration information. While entering the data

source solely in this file is sufficient, it is recommended to also define the

resource in the previously mentioned web.xml file, mainly to document a

web application’s resource requirements [113]. Since these files are specific

to the web application, it is already configured accordingly, requiring no

action from the reader.

<Context>
<Resource name="jdbc/postgres" auth="Container"
 type="javax.sql.DataSource" driverClassName="org.postgresql.Driver"
 url="jdbc:postgresql://127.0.0.1:5432/shop"
 username="cattus" password="tomtom12" maxTotal="100" maxIdle="10"
 maxWaitMillis="-1" removeAbandonedOnBorrow="true"
removeAbandonedTimeout="60" />
</Context>
Listing 11: context.xml

First, the name to be used by JNDI and attributes relating to the driver are

specified. The url attribute is used to point to the database server’s IP and

database name. For the following example, the default values of a

PostgreSQL database are used. Should the reader prefer a different

45

database management system the entries need to be adjusted accordingly.

It is also necessary to specify the username and password of a previously

created user. The web application will use the given credentials to login and

perform operations within the database. It is beneficial to create a unique

user, since only the minimum rights need to be assigned and actions taken

by the application can be quickly identified.

Lesson Learned: When working with databases, the configuration is

important. Should the given user not have the necessary permissions,

nothing will work. Additionally, the problem’s source cannot be easily

identified using Tomcat’s logs. Should inexplicable problems occur, it is

therefore recommended to apply the debug method shown in the

appendix: 9.5. Debug Code

Additionally, to mitigate any possible database connection pool leaks the

two attributes removeAbandonedOnBorrow and removeAbandonedTimeout are

added. After a database connection has been left idle for the specified

amount of time, it is terminated automatically [107].

To begin with, productlist.jsp gives a quick overview of the products

currently listed in the database.

<s:script type="rexx">
cntxt=.bsf~new("javax.naming.InitialContext")
ds = cntxt~lookup("java:/comp/env/jdbc/postgres")
con = ds~getConnection() -- connect to database

stmt = con~createStatement()
qry = "SELECT * FROM tree;"
rs = stmt~executeQuery(qry) -- retrieve all data from the table

/* Create a list using product names and prices */
SAY ''
DO WHILE rs~next() -- iterate through all the rows stored in the table
 SAY ''rs~getstring("name")':' rs~getstring("price")'€' -- for each
row, fetch data
END
SAY ''

/* Close resultSet, statement and connection */
rs~close()
stmt~close()
con~close()
</s:script>

Listing 12: productlist.jsp

46

First, the InitialContext class gets instantiated. Since this class is already

included in the Java Standard Edition, no additional class files are needed.

A context represents a set of bindings that all share the same naming

convention. The created object gives access to the most basic methods, like

naming or looking up an object [114]. The use of Tomcat further simplifies

the configuration since it provides a JNDI InitialContext implementation

instance that gets configured for each web application during its initial

deployment. Resources are placed in the JNDI namespace under

java:comp/env [113]. No further JNDI configuration is necessary and the

database can be accessed effortlessly from the previously defined path,

using the lookup method.

After the context has been configured the getConnection method is used to

establish a connection. Once again it is recommended to use the shown

three lines of codes as standard building blocks for future web applications.

The executeQuery method of the Statement Interface uses a statement a SQL

statement, as input parameter and returns a ResultSet object. This object

contains the resulting data of the query which in turn is used to generate

HTML code to display information to the user [115].

The ResultSet Interface represent the data of the query in form of a table.

The data is navigated by a cursor, which is initially at a position before the

first row. The next method is used to advance the cursor along the table’s

rows. By default, the type is set as TYPE_FORWARD_ONLY, meaning that it is not

possible to go backwards and that the object is not sensitive to changes to

the underlying data. The ResultSet offers a multitude of methods to access

the desired data, for example the getString Method can be used to retrieve

data from a column by name [116]. A DO loop iterates through entries of the

result set, each representing a row in the output of the database query.

This example’s query resulted in a row for each tree, for which its name and

price are fetched and displayed. Afterwards, the cursor of the ResultSet is

advanced to the next row, until none are left.

For good practice and to avoid errors, the ResultSet, Connection, Statement

and the later discussed preparedStatement should always be explicitly

47

closed. Especially with connection pools it is uncertain at what time

statements and preparedStatements are otherwise closed [117].

Figure 13: productlist.jsp in Web Browser

6.3. Writing Data /treeshop/signup.jsp

Most dynamic web applications not only make data available, but also allow

the user to interact and provide new data. As a minimum, almost all

modern websites allow users to create an account.

While the writing of new data is relatively straightforward and quite like

the previously shown solution, the storage of user provided data requires

the consideration of additional security aspects. Not only does the user’s

data need to be stored safely, but the web application itself needs to be

protected from unwanted manipulation by ill-intentioned actors.

The page signup.jsp starts like any other and continues to display a form

for a user to enter a username in form of an e-mail address and a password,

which needs to be repeated. Once again, all three fields have been set as

required, not allowing the user to proceed without filling them first. This

48

is particularly important, since form fields left blank might result in

erroneous database entries.

Additionally, a checkbox can be ticket, for users who wish to receive

promotional e-mails. The automatic generation of said e-mails will be

implemented in a later example. At this point the user’s consent is

requested to flag the newly created account accordingly. Even though,

according to the European Union’s General Data Protection Regulation,

direct marketing E-mails about products or services can be sent to existing

customers, any other promotional E-mails require prior consent [118].

Generally, it is good practice to only send e-mails to users who explicitly

wish to receive them, not only to avoid complaints, but also to build a

positive brand image. Consent should be given in the form of a clear,

affirmative action; therefore, the checkbox needs to be explicitly clicked on

and the corresponding label is not formulated ambiguously [119].

After the form data has been transmitted to the web server, the external

script createuser.rex is activated and only progresses if the user has given

the same password twice.

6.3.1. get and post Methods

The first important difference can be observed in the form using the post

method, instead of the default, get.

post signals the webserver that data is being sent and attaches it to the body

of the message. In contrast, the data transmitted by a get request is

appended to the URL and therefore easily visible. Not only might it be

concerning for the user to see his potentially sensitive data such as

passwords in plain text, get requests are usually cached by web browsers

and might additionally appear in their history. In conclusion, it is good

practice to default to post, especially when dealing with forms of this nature

[120].

49

6.3.2. Securely Storing Passwords

It is imperative not to store users’ passwords as plain text. Vulnerabilities

previously unknown or other security risks might result in a compromised

database. Passwords are especially sensitive since users might use the same

password for multiple websites [121].

The suggested solution to safe password storage is the application of a

cryptographic hash function. They take an input (preimage) and generate

a unique cryptographic fingerprint (digest) for it. Each fingerprint is unique

to the input and irreversible making it impossible to backtrack to the

original input [122].

“A hash function is a function that deterministically maps an arbitrarily large

input space into a fixed output space” [122].

Since some users might use similar or identical standard or basic

passwords, that might result in the same fingerprints, the concept of salting

is introduced. Otherwise, an attacker in possession of all the stored hash

values, who managed to guess one of them correct, might would have

access to all the user accounts using the same password. Before the

cryptographic hash function is performed a unique, randomly created

string is attached to the user’s password. [123].

When it comes to implementation, the Open Web Application Security

Project (OWASP) suggests to strictly using third party libraries

implementing the necessary algorithms. While Java itself offers

cryptographic functionality and the creation of a message digest, there is

too much room for error when creating a custom solution. For example, the

widely used SHA-256 algorithm is simply too fast. OWASP recommends

the Bcrypt hashing algorithm as the default choice [123].

The Blowfish encryption algorithm, developed by Provos and Mazières,

allows users to increase the verification time to adjust it to increasing

processor speeds, by modifying the cost value. It is based on their

Eksblowfish Algorithm and offers a possible salt space so large, that it

makes the precomputation of hash values based on common passwords

incredibly difficult, since the required storage would be enormous [124, pp.

6-11]. The goal should be finding a balance between performance impact

50

and security, tailored to the CPU speeds of the current day and age. It is

also worthy to note, that should the algorithm be too taxing, an attacker

might be able to perform a denial-of-service attack on the webserver [123].

Most curiously, the implementation of the Bcrypt not only makes the

process of password storage much more secure, but also extremely simple.

Damien Miller offers the functionality of Bcrypt in form of a convenient

java library called jBcrypt, which comes included with the treeshop web

application. Although already included the latest version of which can be

downloaded from: https://www.mindrot.org/projects/jBCrypt/

bcrypt=.bsf~new("org.mindrot.jbcrypt.BCrypt")
fingerprint = bcrypt~hashpw(pw1,bcrypt~gensalt(12)) -- create a hash value that is
safe to store
Listing 13: createuser.rex jBcrypt

The method hashpw takes the user’s input and a salt value to output the hash

value in string format. Since the library also offers a secure method to create

the salt value, the method gensalt is used. Most curiously, this method

takes the previously discussed work factor as input. Even though jBcrypt-

0.4 uses a work factor of 10 as default, OWASP recommends raising it to 12

[123].

6.3.3. SQL Injection

Before showcasing how the username and hashed password are stored,

injection flaws need to be discussed. OWASP identifies injection as the

number one web application security risk. A hostile user might send

untrusted data as part of a command or a query, to trick the interpreter to

execute unintended commands or accessing data without authorization

[125].

Su and Wasserman find web applications being susceptible to a large class

of malicious attacks know as command injection attacks: “This is because

queries are constructed dynamically in an ad hoc manner through low-level

string manipulations. This is ad hoc because databases interpret query

strings as structured, meaningful commands, while web applications often

view query strings simply as unstructured sequences of characters” [126, p.

1].

https://www.mindrot.org/projects/jBCrypt/

51

For example, on an unprotected database anybody could enter username’

OR ‘15’ = ‘15 in a form prompting for a username and leave the password

field blank. Should the web application forward this request directly to the

database resulting in the SQL query: SELECT * FROM username WHERE user =

‘username’ OR ‘15’ = 15’ AND password = ‘’;. As a result, the output

would include all data available for the specified user.

There is a quite simple solution to this problem, instead of the previously

used statement interface the extended version PreparedStatement is used.

When an SQL query is executed, it first gets parsed and compiled.

Afterwards, the data acquisition path is planned and optimized. In the final

step the query is executed, and the result gets returned. In comparison to

the normal Statement, which goes through the four steps when the query is

executed, PreparedStatement performs the first three steps when the

statement is created and only performs the last step during execution. Not

only does this increase the speed of database access and allow other

features like batch processing, but all special characters are automatically

escaped [127]. Escaping special characters results in them being treated as

regular parts of a string [128]. The above-mentioned exploit is therefore not

possible since the user input is strictly treated as a normal string with no

power to change the database query. In conclusion, when dealing with

database queries based on user input, the minimum-security measure

suggested is using the PreparedStatement interface.

prepstmt = con~prepareStatement("INSERT INTO customer (username, password) VALUES
(?,?)")
prepstmt~setString(1,username)
prepstmt~setString(2,fingerprint)
prepstmt~executeUpdate() -- add new user to database
prepstmt~close()
Listing 14: createuser.rex prepareStatement

The parts of the query where user input is used are omitted and instead

filled with question marks. In the next lines the setString method is used

to replace the question marks with the user input.

6.3.4. Hypertext Transfer Protocol Secure

Above all, the most important security measures necessary to facilitate a

secure web application is the use of the Hypertext transfer protocol secure

52

(HTTPS) in place of regular HTTP. The Transport Layer Security (TLS)

protocol, which was formerly known as Secure Sockets Layer (SSL) protocol

is used to achieve this by means of an asymmetric public key infrastructure.

All information sent with the HTTP protocol is sent as plaintext and

therefore extremely vulnerable [129].

To prove one’s identity it is necessary to obtain a certificate for a domain

from a certificate authority. Since this work focusses on the

implementation of a Tomcat server on a local network, the HTTPS protocol

is not further discussed. Should the reader decide to make his web

application accessible over the internet, the author encourages the use of

HTTPS as an absolute necessity.

Since this work’s focus is not the security aspect, the used measures are

suggested as a bare minimum, with encouragement to invest additional

time in research for real-world use cases.

6.4. Creating a Dynamic Web Page, Sessions /treeshop/index.jsp

After establishing how database access works, now the focus shifts to the

main page of the treeshop web application.

The main difference compared to previously shown Jakarta Server Pages is

the usage of sessions. While sessions utilize cookie technology, they are

more advanced and require the server to store data for each user. In

contrast to cookies, the user only stores and transmits her session id, which

the server uses to access data corresponding to it. For web development,

using sessions is quite like using cookies, the only difference being slightly

different methods used.

Since the data is stored by the server and does not be transmitted, the usage

of sessions is more secure. Compared to cookies, which have a maximum

size of 4 kilobytes, sessions can hold up to 128 megabytes each. To

summarize, sessions and cookies both store user related data, the first on

the server, the latter in the web browser [130].

The Apache Tomcat container uses the HTTP Session interface to create a

session id for each user and stores it in a cookie called JSESSIONID, which

53

then gets sent with each request. If cookies are disabled, the URl is

rewritten [131]. Consecutively objects related to a session id can be bound

to it, as well as general information about the session accessed or

manipulated. For example, the time of session creation can be requested

with the method getCreationTime [132]. To enable sessions, the session

attribute of the page directive needs to be set to true.

Figure 14: JSESSIONID Cookie

Since the default timeout value for Tomcat sessions is only thirty minutes,

the web.xml file needs to be adjusted to extend this duration. By changing

the session-timeout attribute of the session-config keyword the lifetime

can be easily extended [133]. Once again, the web.xml specific to the web

application is edited, therefore the reader is not required to change it for

the treeshop web application. The value has been set to 60*24 minutes, as

a result a guest’s data will be deleted after one day.

The main page of treeshop is created by the file index.jsp, two ooRexx

scripts are used to build its components:

Figure 15: treeshop Main Page in Web Browser

54

6.4.1. mainpage.rex

The body of the shopping websites main page is created by the external

script mainpage.rex. After the implicit objects, request, response and out

are fetched, the method getSession is used to get access to data related to

the session. The sessionid, which has either been sent as a cookie or is

created on first visit is used to identify the user.

To begin with, the contents of the main page are built by querying all

entries for the table tree, which contains all available products and

information related to them. The ROUTINE createProduct uses this data to

create a box for each product, displaying related information and enabling

the user to put a specified quantity into her basket.

::ROUTINE createProduct
PARSE ARG name, picture, price, height, tree_id

SAY '<div class="grid-item">'
 SAY '<h2>'name'</h2>'
 SAY ''
 SAY '<p>Price:'price'€</p>'
 SAY '<p>Height:'height'm</p>'

 SAY '<form name="choice" method="post">'
 SAY '<input type="hidden" name="choice" value="'tree_id'">'
 SAY '<select name="quantity">'
 SAY '<option value="1">1</option>'
 SAY '<option value="2">2</option>'
 SAY '<option value="3">3</option>'
 SAY '<option value="4">4</option>'
 SAY '<option value="5">5</option>'
 SAY '</select>'
 SAY '<input type="submit" value="Buy">'
 SAY '</form>'
SAY '</div>'
Listing 15: mainpage.rex ::ROUTINE createProduct

The attribute src of the tag specifies the URL of an image. The

database entries for the images all look the same way:

/files/Imagename.jpg. The slash at the beginning of the path indicates a

relative URL, referring to the current page. Therefore, the web page loads

the image from: http://localhost:8080/files/Maple.jpg The main

advantage of this approach is that, should the domain change, the web

application will still work as intended [134]. Another benefit is the

opportunity to easily modify the page. In case the pictures need to be

http://localhost:8080/files/Maple.jpg

55

loaded from another web page, the only thing that needs to change is the

URL in the database.

The script contains the necessary code for two approaches of handling the

shopping cart. Depending on the session containing the attributed logged,

the quantity chosen in the form at the bottom of each box is processed

differently.

A guest user’s shopping cart is stored in a simple java array, consisting of

integers for both the index and the corresponding element. The index refers

to a product id, while the element specifies the amount in the shopping

basket. The id is used to identify an item in the database. The array is stored

in the session, enabling it to scale in the future. Special attention is given

to products already present in the cart, instead of overwriting the quantity

it needs to be updated.

IF session~getAttribute("cart") == .nil THEN DO
 cartArray = .bsf~bsf.createJavaArray("java.lang.String",100) -- create a new
cart if it doesn't exist
 session~setAttribute("cart",cartArray)
END

cart = session~getAttribute("cart")
IF cart[choice] == .nil THEN DO
 cart[choice] = quantity -- add a new product to the cart
 session~setAttribute("cart",cart)
END
ELSE DO
 cart[choice] = cart[choice] + quantity -- update the quantity of an existing
product
 session~setAttribute("cart",cart)
END
Listing 16: mainpage.rex cartArray

Should the user be logged in, her shopping cart is stored in the database

instead, using a preparedStatement.

qry ="INSERT INTO cart (customer_id, tree_id, quantity) VALUES (?,?,?) ON CONFLICT
(tree_id,customer_id) DO UPDATE SET quantity = ?;"
prepstmt = con~prepareStatement(qry)
prepstmt~setInt(1,session~getAttribute("logged"))
prepstmt~setInt(2,choice)
prepstmt~setInt(3,quantity)
prepstmt~setInt(4,quantity + cartquantity)
prepstmt~executeUpdate() -- update shopping cart
prepstmt~close()
con~close()
Listing 17: mainpage.rex Edit Table cart

56

When looking at the query, the amount selected gets inserted in the table

cart as a combination of customer_id and tree_id, realizing the many-to-

many relationship. Since the combination of values are defined as unique

in the database, should they be duplicated the database will give an error.

By using ON CONFLICT, should this situation occur the values will be update

instead, combining the new quantity chosen with the one previously

stored.

6.4.2. userheader.rex

This script, creating the header on top of multiple web pages, demonstrates

how conveniently external scripts can be reused. It enhances the header

with the current number of products in the shopping cart as well as buttons

to login or logout, depending on the status stored in the session.

6.5. Logging In /treeshop/login.jsp

The purpose of the page login.jsp is to take the users credentials and check

their validity. Afterwards, the login state is stored in the session. Once

again, the form input is processed by an external script called, login.rex.

The script first uses a database query to determine the existence of the

given username. In case it does not, a label is used to jump to the same

block of code that is used to display a message for a wrongly entered

password. The reason being, that otherwise a third party would be able to

find out if an e-mail address is registered on the website.

Afterwards, jBcrypt’s checkpw method uses the entered password and the

hash stored in the database to authenticate the user. On success, TRUE is

returned and the attribute logged is added to the session, using the userid

as value, serving as an identifier. This attribute is used by multiple pages to

determine the login status.

bcrypt=.bsf~new("org.mindrot.jbcrypt.BCrypt")
IF bcrypt~checkpw(pw, ha) THEN DO -- only proceeds if password is correct
 session~setAttribute("logged",id) -- store login status in session
Listing 18: login.rex checkpw

57

The use of a session instead of cookies is highly beneficial to the website’s

overall security. Were the user information directly transmitted with a

cookie, a third party could easily replicate a cookie with a particular user’s

id to gain access. If a session token is transmitted instead, a unique value is

generated each time the user logs in. Furthermore, sessions expire in a

shorter time span [135].

It is a common scenario for a user to browse and add products to the cart

as a guest. Only on checkout, login is required. It is important that the

shopping cart is not lost during this process. Therefore, all the products

stored in the cart array need to be moved to the database. Additionally,

should any product be already present in the database basket, instead of

overwriting it, it should be updated.

6.6. Invalidating a Session /treeshop/logout.jsp

It is essential to also give the user opportunity to log out again. To achieve

this, the page logout.jsp is being made accessible by logout buttons

throughout the web site. Once the page is accessed, the method invalidate

is used to clear the session and all its associated parameters.

session~invalidate() -- clear session
Listing 19: logout.jsp invalidate

6.7. Accessing the Shopping Cart /treeshop/shoppingcart.jsp

When the user clicks on the shopping cart button, found in the page’s

header, he gets redirected to the page shoppingcart.jsp. It allows to review

all items stored in the cart, as well as adding, removing, or fully deleting

products. The main functionality is held in the script shoppingcart.rex,

additionally userheader.rex is reused to generate a dynamic header.

58

Figure 16: shoppingcart.jsp in Web Browser

Just like the main page, the script is split into two parts, which get executed

based on the user’s logins status.

cart = session~getAttribute("cart")
totalprice = 0
cartsupp = cart~supplier()
SAY '<div id="cartcontainer">'
DO WHILE cartsupp~available() -- iterate over cart array
 qry = "SELECT * FROM tree WHERE tree_id="cartsupp~index";"
 stmt = con~createStatement()
 rs = stmt~executeQuery(qry) -- get data for product in cart

 DO WHILE rs~next()
 totalprice += rs~getString("price") * cartsupp~item
 CALL createProduct rs~getString("name"), rs~getString("picture"),
rs~getString("height"), rs~getString("price"), cartsupp~item,
rs~getString("price"), cartsupp~index
 END
 rs~close()
 stmt~close()
 cartsupp~next
END
SAY '</div>'
con~close()

CALL printtotal totalprice
Listing 20: shoppingcart.rex Create Guest Cart

A supplier is created if an array is stored in the session, representing a

guest’s shopping cart. Each iteration yields an index indicating the item id

and its corresponding item representing the items quantity. Additionally,

59

the total price of all items gets updated during each iteration, to be printed

at the bottom of the page.

The routine createProduct then uses these values to create a box containing

information on the various products. Additionally, three buttons, +, -, and

delete are created to manipulate the cart’s contents.

Three IF blocks correspond to the previously generated buttons. The minus

button necessitates to consider a situation, where the quantity reaches

zero. In this case, the index value needs to be set to .nil, indicating the

product to be nonexistent. The same logic applies to the delete button

where the value is set to .nil straight away.

IF request~getParameter("actn") == "-" THEN DO
 id = request~getParameter("tree_id")
 qty = request~getParameter("qty") - 1
 cart[id] = qty -- reduce quantity by 1
 IF qty <= 0 THEN cart[id] = .nil -- delete product from cart if reduction
goes beyond 1
 session~setAttribute("cart", cart)
 response~sendRedirect(request~getRequestURI()) -- refresh page
END
Listing 21: shoppingcart.rex Minus Button

Should the user be logged in, the created page is similar in concept, except

for the data being accessed from the database instead of the array.

6.8. Concluding the Purchase Process /treeshop/checkout.jsp

The final page checkout.jsp simply removes all the entries in the cart table

that are related to the logged in user, simulating a concluded purchase

process. A guest is required to login instead. In a real-world use case, the

user would be asked for payment and shipping details instead.

7. Advanced examples /treeshop/admin

This is a good time to think about design decisions. For most examples until

now, most of the required code is stored directly in the JSP or an ooRexx

script. While this approach has advantages, like all the code being in one

place and the ability to conveniently update it, the nested IF commands

make it hard to work with and create redundantly executed lines of code.

60

It might be beneficial to separate the request actions, implementing logic,

from the generation of content. This would also result in increased

efficiency, since less unnecessary elements need to be processed and

loaded. Nonetheless, for a beginner working with web applications, the

shown approach is a fantastic way to quickly develop working web pages.

The conclusory web examples in the subfolder admin of the treeshop web

application will be used to show a slightly different approach.

While the contents of application/WEB-INF are shared across all directories,

each subdirectory can be assigned its own resources and a unique welcome

page: http://localhost:8080/treeshop/admin

As can be seen by the URL above, the folder structure directly influences

the path to access pages. Also, special attention needs to be given to shared

resources like stylesheets.

<link rel="stylesheet" href="../css/treeshop.css">
Listing 22: Link Resource for Subdirectory

The two leading dots indicate for the resource to be found in its parent

directory. Therefore, the linked folder css is not found in the subdirectory

admin, but one directory up. This enables pages found in subfolders to all

use the same stylesheet.

7.1. Uploading Files /treeshop/admin/addproducts.html

Since entering data into a database can be time consuming, the page

addproducts.html offers the functionality to enter new products to be sold

on the main shop page. Since all of treeshop’s pages are dynamically

created using the database, newly added products will appear immediately.

Images are an essential part of modern web pages. This example facilitates

their upload, to be seamlessly integrated, named and stored.

On request, the page addproducts.html displays a set of fields

corresponding to the database’s columns. To enable uploading files, a form

needs to be given the attribute enctype with the value multipart/form-data.

<form action="uploader" method="post" enctype="multipart/form-data" id="mailform">
Listing 23: addproducts.html Upload Form

http://localhost:8080/treeshop/admin/

61

An enctype defines the document’s encoding type, with multipart/formdata

allowing file uploads. Usually, it is not necessary to specify a form’s

encoding, with file uploads being the exception [136].

In contrast to previous examples, no external .rex script is used to process

the data, instead the form points to the servlet uploader. For a JSP to be

used this way, the web.xml file specific to the web application needs to be

edited. Should the reader have copied the nutshell examples, no further

modifications are necessary.

<servlet>
 <servlet-name>uploader</servlet-name>
 <jsp-file>/admin/code/uploader.jsp</jsp-file>
 <multipart-config>
 <location>C:\Program Files\Apache Software Foundation\Tomcat
10.0\files\</location>
 <max-file-size>10000000</max-file-size>
 <max-request-size>10000000</max-request-size>
 </multipart-config>
</servlet>

<servlet-mapping>
 <servlet-name>uploader</servlet-name>
 <url-pattern>/admin/uploader</url-pattern>
</servlet-mapping>
Listing 24: web.xml Uploader Servlet Configuration

The file uploader.jsp is configured as a servlet named uploader. This

enables further configuration, otherwise only available to Java servlets. For

example, the load order, initialization attributes and security roles can be

configured [137]. Since the JSPs content is written in the ooRexx language,

a fully functional Rexx Servlet has been created. Now, the servlet’s

MultipartConfig can be easily modified.

To begin with the location for temporary files is specified. The proper

location and filename for the file will be chosen inside the script. A

temporary location is necessary since the file is first written as a temporary

file and only afterwards processed to be stored permanently [138]. The

maxRequestSize and maxFileSize Elements are used to set a limit for the size

of both the file and the request in bytes [139]. Here the maximum size has

been set to the equal of 10 megabytes.

Additionally, the servlet is registered in the servlet-mapping. This map is

used by the container to resolve request [137]. Henceforth, the servlet is

accessible from the path /uploader. This configuration allows the JSP to

62

directly process the request generated by the form on the page

addproducts.html. Since the request gets directly sent to the servlet, no

more IF loops looking for request parameters are required.

7.1.1. Upload Servlet /upload

The servlet functions like any other JSP, the only difference being the

omission of any HTML references. After the JSP declarations, the scripting

content immediately starts. Since all form fields have been set as required,

the requests will always contain standard form fields as well as an uploaded

file. The value of the fields can be easily accessed like a standard form using

the getParameter method. Since no duplicate products are allowed, the

script first checks the database for any entries with an identical name.

Should an entry with the same name exist, a warning is displayed to the

user. Whenever content needs to be displayed, the resources leadin and

leadout are used to create a proper HTML page.

Before the new product can be added to the database, the uploaded file

needs to be processed.

filename = name || ".jpg"
location = "/files/" || filename
request~getPart("file")~write(filename) -- permanently write file to temporary
location
Listing 25: uploader.jsp File Processing

The product’s name is given in the form and will be used together with the

.jpg file extension to name the file. As has been previously discussed, the

file is placed in the files folder, which has been defined as a source for

static content. The string location gets stored in the database and is later

used to by the img tag to access the picture from its relative path.

The getPart method is used to fetch a specific part from the request. The

file has been given the name file in the form, which gets used to fetch it.

At this point the file is stored in the temporary location, defined in the

MultiPartConfig, found in the web.xml file. The method write is used to

write the file to the disk with the previously given filename. Since no

specific path is given, it gets permanently stored in the temporary location

[140].

63

After writing the file to disc, a confirmation page is generated for the user.

The resources leadin and leadout are used again to create a proper HTML

page.

Should multiple files be contained in the request, the method getParts can

be used to get a collection of all Parts, to be then iterated over [141].

After all fields are entered and an image is uploaded, the newly created

product will immediately be visible on all of the application’s web pages.

7.2. Common Gateway Interface

Not to forget, the Common Gateway Interface (CGI) offers the possibility

to directly execute a script on the web server, generating a response for each

request. Just like with JSPs, output methods can be used to create HTML

pages. Tomcat allows the usage of CGI scripts by registering them like any

other servlet. Since every request leads to the creation of a new process on

the server, this approach can lead to significant performance problems in

high traffic situations. Compared to Jakarta Servlets, which use Java, CGI

scripts are dependent of the server’s operating system, interpreters, and

compilers. The requests of a CGI script leads to its direct execution from

the command line [142, pp. 13-17].

This results in the programs being run outside of the Java Virtual machine,

bypassing the Java Security Manager. Given all these limitations, CGI

scripts are commonly used during development [143]. While this work

focuses on the use of JSPs, this method is still briefly mentioned, since it

offers an alternative way to directly execute scripts.

7.3. Sending E-Mails /treeshop/admin/sendnewsletter.jsp

The final example page demonstrates how a web application can be used to

send e-mails. Since the database already includes product details and the

customer’s e-mail addresses, all information necessary to create a

newsletter promoting current products exists.

The script found in the body of sendnewsletter.jsp creates a list of all

products in the database and allows them to be selected by a checkbox. The

64

JSP mailer.jsp is then used to create and send e-mail messages. Therefore,

just like in the previous example, the servlet called mailer needs to be

registered in the web.xml file.

For this web application to function the .jar files containing Jakarta Mail

and Jakarta Activation are required. The demo web application already

includes both of them.

Jakarta Mail can be downloaded from https://eclipse-

ee4j.github.io/mail/ This API was previously known as JavaMail and

offers functionality for Java applications to implement e-mail functionality,

such as sending and reading e-mails [144].

The second prerequisite, Jakarta Activation can be downloaded from

https://eclipse-ee4j.github.io/jaf/ According to the Eclipse

Foundation, it is used to: “determine the type of an arbitrary piece of data;

encapsulate access to it; discover the operations available on it; and

instantiate the appropriate bean to perform the operation(s)” [145].

Lesson Learned: The correct file jakarta.activation-2.0.0.jar should not

be mixed up with jakarta.activation-api-2.0.0.jar. Furthermore, version

2.0.0 of Jakarta Mail requires Java Activation to be using the Jakarta

namespace, therefore Version 2.0.0 should be used for both.

https://eclipse-ee4j.github.io/mail/
https://eclipse-ee4j.github.io/mail/
https://eclipse-ee4j.github.io/jaf/

65

Figure 17: createnewsletter.jsp in Web Browser

The page sendnewsletter.jsp generates a form with a checkbox for each

product in the database. All the form’s checkboxes have the name choice

and the corresponding product id as value. The page also uses a database

query to count the number of recipients to dynamically display how many

e-mails will be sent in the submit button.

The servlet mailer first makes sure that at least one product has been

selected, otherwise an empty e-mail would be sent. Since choice most likely

has multiple values, instead of getParameter the method

getParameterValues is needed. It will fetch all values and store them in an

iterable string array [146].

choices = request~getParameterValues("choice")
choice = ""
DO productname OVER choices -- append all product names to a string
 choice = choice || "'" || productname || "'" || ","
END
choice = choice~delStr(choice~length) -- remove the string's last comma
Listing 26: mailer.jsp Choicearray

66

To create the message, first the variable choice is defined as an empty

string. The previously fetched string array is iterated over, to create a list of

product names, which is usable in a database query. For each iteration, a

new product is added until none are left. The existing string (for the first

iteration it is empty) is extended with the product name, enclosed in single

quotation marks and a comma. After the iteration is concluded, the last

comma is removed to create a functioning database query. This is achieved

by the delStr Method.

Delete String removes the character at the given position. By giving the

length of the whole string as attribute, the last character is deleted [98].

Concerning the receivers, when a user signs up for the web page, her e-mail

address is given. Therefore, a list of receivers can be easily generated. Each

database entry referring to a user contains a Boolean used to determine

whether the user wishes to receive emails.

It might be a mistake to simply set all the customers as receivers for a single

e-mail. Afterall, each of them would see the whole list of customers in the

recipient fields. Since this information should not be exposed, the script

sends a separate e-mail to each customer.

stmt1 = con~createStatement()
qry1 = "SELECT * FROM customer WHERE receives_mail = 't';"
rs1 = stmt1~executeQuery(qry1) -- select all customers who wish to receive the
newsletter

emailcount = 0
DO WHILE rs1~next() -- create an e-mail for each customer and send it
Listing 27: mailer.jsp Select Receivers

In consequence, the database is quered for all e-mail entries that are signed

up for the mailing list. The variable mailcount meanwhile keeps track of the

number of e-mails sent. The created resultSet is then used to create and

send a personal e-mail for each iteration. Since the resultSet of this first

query will contain another, the variables stmt, qry and rs have been

numbered accordingly. Should the same variables be used for both, they

might overwrite each other and cause problems.

props = .bsf~new("java.util.Properties")
session = bsf.loadclass("jakarta.mail.Session")~getInstance(props)
msg = .bsf~new("jakarta.mail.internet.MimeMessage",session)

sender = .bsf~new("jakarta.mail.internet.InternetAddress",

67

"newsletter@treeshop.com")
msg~setFrom(sender)

receiveraddress = rs1~getString("username")
receiver = .bsf~new("jakarta.mail.internet.InternetAddress",receiveraddress)
type = bsf.loadclass("jakarta.mail.Message$RecipientType")
msg~addRecipient(type~to,receiver)

msg~setSubject("Here Are the Latest Products From treeshop!")
Listing 28: mailer.jsp Create Message

To begin with a Jakarta Mail session needs to be created. To instantiate the

corresponding class a set of Java properties is necessary. The class

java.util.Properties creates a persistent set of properties where a key

corresponds to a property, both of which are strings [147]. For the example

given, no special properties are needed, they need to be defined either way,

since properties are needed to create a session instance.

For example, should the reader utilize a server requiring authentication,

the property mail.smtp.auth would be set as true with the command

setProperty("mail.smtp.auth","true") [148, p. 51].

Afterwards a session instance is created. The session is used as a bridge to

the Jakarta Mail API, handling configuration and authentication. Using this

session, the message to be sent is created. More specifically, the subclass

Mimemessage is used, which allows the use of different mimetypes and

headers [149].

Now, sender and receiver are added to the newly created message; the

addresses need to be defined using the Internetaddress class.

While defining the sender is straightforward, the receiver additionally

requires the recipient type to be set. Afterall, the receiver can be of the type

TO, CC or BCC [150]. For this example, a simple TO receiver is used, the address

being made available by the database. To conclude, the subject is added.

The last piece missing is the message’s body. To create it a second database

query is nested into the first.

stmt2 = con~createStatement()
qry2 = "SELECT * FROM tree WHERE name in ("choice");"
rs2 = stmt2~executeQuery(qry2) -- get data for all products that have been
selected

i = 0
DO WHILE rs2~next -- create html code for each product

68

 line1 = '<div style = "float: left; margin-right: 10px;">'
 line2 = '<h2>' rs2~getstring("name") '</h2>'
 line3 = '<img src="http://localhost:8080' || rs2~getString("picture") '"
heigth="120" width="150" />'
 line4 = '<p>Price:' rs2~getstring("price") 'Euro</p>'
 line5 = '<p>Height:' rs2~getstring("height") 'Metres</p>'
 line6 = '</div>'

 i += 1
 product.i = line1 || line2 || line3 || line4 || line5 || line6 -- append all
lines of html code
END
rs2~close()
stmt2~close()

text = '<html><head><meta charset="UTF-8" /></head><header>' -- create proper
html leadin
text = text || '<h1>Vist
treeshop</h1>'
text = text || '<h4><a
href="http://localhost:8080/treeshop/admin/unsubscribe.jsp?unsub=' ||
receiveraddress '">Click Here to Unsubscribe</h4>'

DO count = 1 TO i -- append all products
 text = text || product.count
End

text = text || '</body></html>' -- append proper html leadout

msg~setContent(text,"text/html")
Listing 29: mailer.jsp Create Message Content

The database is queried for all the product data related to the choice made

on the previous page. The main problem of this approach is that the whole

message needs to be contained in a single string. For this reason, and to

easy formatting and the insertion of pictures, the message is created by

HTML code.

A HTML segment for each product is created, to be later added to the main

message. For each product, six lines of HTML code create a <div> section.

Additionally, each iteration increases the index value i by one. The six lines

are then appended together to form a single line and stored under the

variable product.i, where i is used to index them accordingly. This gives

the script the flexibility needed to adapt to a varying number of products.

After all the <div> sections are created the main e-mail text commences

with the tags to properly define an HTML document. Afterwards a

headline, linking to the shop’s main page is generated, followed by a link to

unsubscribe. The feature to unsubscribe from all newsletters will be

69

discussed in the next section. Next, all the previously generated products

are added to the string, followed by the HTML closing tags.

The setContent method is then used to add this string as the message’s

body, finalizing the message.

7.3.1. Sending and Receiving E-mails with MailHog /mailer

The Jakarta Mail API is platform and protocol independent and can

therefore be used on any operation system and with most e-mail service

providers allowing IMAP, POP3 or SMTP protocol access [144]. Therefore,

once this application has been properly tested, it can be linked with an e-

mail server to send messages into the real world.

During the first phases of testing, usually many e-mails needs to be sent.

To simplify this process the author suggests the use of an open-source tool

called MailHog. The appendix includes instructions to set up a local testing

SMTP server on the localhost: 9.6. MailHog. The process is incredibly easy

and can be done within minutes.

Since this testing tool accepts any combinations of username and password,

placeholder values for them will be used. By default, MailHog uses the port

1025 on the local host. Therefore, these configuration parameters will be

used for this example. Should the reader wish to use a different e-mail

server, adjustments are necessary.

transport = session~getTransport("smtp")
transport~connect("localhost",1025,"username","pw")
transport~sendMessage(msg,msg~getRecipients(type~to)) -- send message using a
test server

emailcount += 1
Listing 30: mailer.jsp Send Message

The session’s transport object is used to send the e-mail. The connect

method establishes a connection to the server, using the attributes host,

port, username, and password. Finally, the sendMessage method takes the

message that has been previously created and its recipients as inputs to

send the e-mail.

70

Figure 18: Newsletter in Web Browser

LESSON LEARNED: The pictures in the e-mail are only visible if the

Tomcat server is up and running.

7.4. Unsubscribing from E-mails /treeshop/admin/unsubscribe.jsp

The European Union’s General Data Protection Regulation requires that

users can object to receiving direct marketing e-mails at any time and that

companies then must stop using their data immediately [118]. To

implement this regulation and help users to easily unsubscribe from

unwanted e-mails, each email includes an unsubscribe link, which gets

dynamically created, requiring the receiver to simply click on the link.

Essentially this provided link includes a get request, rewriting the URL to

include the e-mail address of the receiver:
localhost:8080/treeshop/admin/unsubscribe.jsp?unsub=bigspender@quick

mail.com

71

Figure 19: unsubscribe.jsp In Web Browser

The script in the document’s body fetches the e-mail address included in

the request by using its assigned parameter unsub. Instead of immediately

unsubscribing, the user is asked if he is certain and displayed a button to

confirm. Upon clicking it, the user’s e-mail address is forwarded to the

servlet remover.jsp. Please note that to function the servlet needs to be

registered in the web.xml file, just like in the previous examples. The servlet

simply changes the column receives_mail for the corresponding user to

FALSE. Upon success, a confirmation message will be displayed.

8. Conclusion

After working with web applications extensively, the author will never look

at web pages in the same way. It is astonishing how technologies that were

created over twenty years ago are still used today, to create the modern

world wide web we take for granted. Furthermore, the author hopes to

inspire readers to create their own web applications. By using the building

blocks introduced in this thesis, in combination with countless available

external Java libraries, even a beginner will be able to quickly turn ideas

into reality.

Three different approaches have been introduced: Adding scripts directly

to a JSP, linking external .rex files containing the logic, and configuring a

JSP with ooRexx content as a servlet. While each of the approaches has its

advantages and disadvantages, they offer great insights into web

development and enable adaptation to a given situation.

72

For more sophisticated web applications, involving a team of developers,

the intermingling of programming logic and design components on a single

JSP will prove problematic. Those projects will use the model-view-

controller design pattern, implemented by a framework like Apache Struts.

Nonetheless, the methods suggested in this work allow a single individual

to create dynamic web pages in record time.

i

9. Appendix

9.1. Prerequisites

This section not only contains a collection of hyperlinks to all the required

software but can also be used as a checklist. This work was finished in the

beginning of the year 2021 and reflects the current development stage. For

future use, the download locations might change, and the software will

most likely by updated. The author recommends downloading the latest

versions available.

9.1.1. Software required to begin

❖ Nutshell examples: http://wi.wu.ac.at/rgf/diplomarbeiten/

▪ An archive containing the demo applications should come

included with this work. In case it is missing, please search for this

thesis in the collection provided

❖ ooRexx: https://sourceforge.net/projects/oorexx/

▪ As a minimum, Version 5.0.0 needs to be used

▪ The latest Beta version is recommended

❖ OpenJDK: https://bell-sw.com/pages/downloads/

▪ Any other Java implementation will also work

▪ Liberica Full JDK should be chosen for maximum compatibility

▪ Needs to match the ooRexx version installed, a 64-bit ooRexx

installation requires a 64-bit version of Java, whereas a 32-Bit

version requires a matching 32-Bit installation

❖ BSF4ooRexx: https://sourceforge.net/projects/bsf4oorexx/

http://wi.wu.ac.at/rgf/diplomarbeiten/
https://sourceforge.net/projects/oorexx/
https://bell-sw.com/pages/downloads/
https://sourceforge.net/projects/bsf4oorexx/

ii

▪ The file bsf4ooRexx-v641-20201217-bin.jar can be found in the

downloaded archive, or once installed, in the installation directory

of BSF4ooRexx

▪ Also recommended from this source, but optional:

• IntelliJ IDEA plugin, enabling text highlighting for ooRexx

▪ Additionally, the Tag Libraries need to be downloaded:
https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rg

f/taglibs/

▪ Also recommended from this source, but optional:

• demoRexx web application

❖ Apache Tomcat 10 (Beta status in January 2021):
https://tomcat.apache.org/download-10.cgi

❖ As an Alternative: Apache Tomcat 9 (Stable status in January 2021):
https://tomcat.apache.org/download-90.cgi

9.1.2. Software required for advanced examples:

❖ PostgreSQL: https://www.postgresql.org/download/

❖ PostgreSQL JDBC Driver: https://jdbc.postgresql.org/

❖ jBcrypt: https://www.mindrot.org/projects/jBCrypt/

❖ Jakarta Mail: https://eclipse-ee4j.github.io/mail/

❖ Jakarta Activation: https://eclipse-ee4j.github.io/jaf/

https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rgf/taglibs/
https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rgf/taglibs/
https://tomcat.apache.org/download-10.cgi
https://tomcat.apache.org/download-90.cgi
https://www.postgresql.org/download/
https://jdbc.postgresql.org/
https://www.mindrot.org/projects/jBCrypt/
https://eclipse-ee4j.github.io/mail/
https://eclipse-ee4j.github.io/jaf/

iii

❖ MailHog: https://github.com/mailhog/MailHog

9.2. Tomcat Installation Guide

The following part will show a step-by-step installation guide for the

Apache Tomcat Software version 10.0.0 on the Windows 10 Operating

system. Before beginning, as a minimum Java needs to be installed.

In case the reader prefers the stable Tomcat Version 9, the installation

process is identical.

Before beginning the installation, it is recommended to inquire about the

current development status and stable releases:
https://tomcat.apache.org/whichversion.html

The apache-tomcat-10.0.0.exe can be downloaded from the webpage:

https://tomcat.apache.org/download-10.cgi by clicking the link 32-

bit/64-bit Windows Service Installer (pgp, sha512).

Figure 20: Tomcat 10 Download Page

After downloading and executing the file apache-tomcat-10.0.0.exe one is

greeted with the following window. It is worth to note that under most

https://github.com/mailhog/MailHog
https://tomcat.apache.org/download-10.cgi

iv

Windows 10 configurations, upon running the exe file, one is greeted with

a popup from Windows User Account Control, where it is necessary to

grant the app permission to make changes on the device to proceed with

the installation. The installer being still labeled as Apache Tomcat 9 is most

likely a result of the software still being in Beta status.

Figure 21: Welcome to Apache Tomcat Setup

After clicking the Next button, the License Agreement can be reviewed and

needs to be accepted by clicking on “I Agree”.

v

Figure 22: Tomcat 10 Setup License Agreement

The following window allows the customization of components to be

installed. It is recommended to select a Full installation.

vi

Figure 23: Tomcat 10 Setup Choose Components

The entries Start Menu Items, Documentation and Examples are self-

explanatory and might prove useful. The Manager entry is used to create a

web application, accessible from /manager, with various functions like

listing all currently deployed web applications and its users [77]. The Host

manager is used for creating multiple websites on a single server [151].

After choosing the components, the next window for the installations

allows further configuration.

vii

Figure 24: Tomcat 10 Setup Configuration

Most importantly the Server Shutdown Port is, by default, set as disabled,

port -1. Here it is highly recommended to choose another available port like

8005, the default shutdown port. This port is used for the server to wait for

a shutdown command. It is not recommended to disable the port while

running and stopping the server with the standard shell scripts. When

using the Apache Commons Daemon from the taskbar, disabling it is an

option [152]. Setting the Server Shutdown ports allows the user to use both

the Apache Commons Daemon as well as the standard shell scripts. This

approach is taken to counteract potential errors. The main part of this work

describes in detail how Tomcat is used.

Additionally, it is recommended to pick a username and password, since

this is the most convenient way to set them. These credentials are used in

the manager web application.

The next part of the installation asks for the path of the Installed Java

Runtime Environment, which is usually automatically detected.

viii

Figure 25: Tomcat 10 Setup Java Virtual Machine

Afterwards the installation path is chosen, in the figure below the default

path is left unchanged.

Figure 26: Tomcat 10 Setup Choose Install Location

ix

After confirming the installation path, the software gets installed and the

user is greeted with the following window. If it is desired to immediately

start, the checkbox to Run Apache Tomcat can be picked. Additionally, the

Readme file can be reviewed.

Figure 27: Completing Apache Tomcat Setup

9.3. Tomcat 9

At the time of writing in January 2021, the Apache Tomcat 10 version was

still in a Beta status. Should the reader prefer the stable Version 9, small

changes are necessary. The reason being, that Tomcat 10 uses the Jakarta

namespace, while Tomcat 9 uses the JavaX namespace.

Instead of using the web applications helloworld.war and treeshop.war,

modified versions can be found in the zip archive included with this work,

more precisely in the directory ZIP_ARCHIVE/javax_for_tomcat9.

The main difference is the tag library used, since it is already part of the

web applications, no further actions are required for the reader.

x

Therefore, should the reader start creating her own applications and prefer

using Tomcat 9, it is instrumental to use the file javax.ScriptTagLibs.jar

instead of Jakarta.ScriptTagLibs.jar.

Other than the taglib used, the main difference can be observed in the

naming of certain classes, for the examples used, the only difference is

related to the creation of cookies.

For example, while in the Jakarta version a cookie is created by using the

class jakarta.servlet.http.Cookie, Tomcat 9 uses

javax.servlet.http.Cookie instead.

This name change is not universal, for example both versions still use

javax.naming.InitialContext to refer to the InitialContext class.

Furthermore, since the latest version of Jakarta Mail is added as an external

library, both Tomcat 9 and Tomcat 10 use the Jakarta namespace to send e-

mails.

As a result, it is a good idea to keep this name change in mind, especially

when encountering inexplicable errors relating to classes not being found.

9.4. PostgreSQL

This section will be used to show all necessary steps to install and setup a

PostgreSQL database management system, enabling the full functionality

of the nutshell examples shown.

9.4.1. Installation

To begin with the latest installer for the operating system of choice can be

downloaded from: https://www.postgresql.org/download/ At the time of

writing the current version was 13.1-1. After downloading and executing the

file postgresql-13.1-1-windows-x64.exe one is greeted with the following

screen on the Microsoft Windows 10 operating system. Usually, it is

necessary to allow the application to make changes in a User Account

Control popup warning.

https://www.postgresql.org/download/

xi

Figure 28: PostgreSQL Setup

After hitting the next button, the installation directory is selected, the

default directory will work fine for most installations on a private machine.

xii

Figure 29: PostgreSQL Setup Installation Directory

Afterwards, the components to be installed are be chosen. For the use case

described, the only mandatory option is PostgreSQL Server.

xiii

Figure 30: PostgreSQL Setup Select Components

The next window asks for a directory to store the actual data that gets

managed in the database management system. Per default, a directory

within the default installation directory is chosen. Again, for use cases on a

private machine this default option will work fine.

xiv

Figure 31: PostgreSQL Setup Data Directory

The next step requires choosing a password for the database superuser

account postgres. Should the database include sensitive data, it is necessary

to choose a strong password, since this account has all possible

permissions. For Apache Tomcat, a separate account will be added later,

therefore this superuser password is usually not repeated frequently.

xv

Figure 32: PostgreSQL Setup Password

In the next step the port, under which the database server is accessible is

chosen. Once again, for the use on a private machine the default port 5432

does not need to be changed and is used for the demo examples.

xvi

Figure 33: PostgreSQL Setup Port

In the next step the locale to be used is chosen. This setting affects the

language, alphabets, number formatting used in the database cluster. By

choosing the default locale, the locale of the operating system is used [153].

xvii

Figure 34: PostgreSQL Setup Advanced Options

The next window summarizes all chosen options. Figure 30 depicts a setup

where all installation components are chosen, and the default options have

been selected.

xviii

Figure 35: PostgreSQL Pre Installation Summary

The next window informs the user that the setup is ready to start the

installation.

xix

Figure 36: PostgreSQL Setup Ready to Install

After the installation process has been concluded the setup is finished. The

Stack Builder feature is not relevant for the use case described.

xx

Figure 37: Completing the PostgreSQL Setup Wizard

Even though the database comes with a graphic administration interface

called pgAdmin 4, this tutorial uses a command line interface to work with

the database. To use PostgreSQL from within the Windows PowerShell or

the Command prompt, it is necessary to add the database management

system to the Environment Variables.

To accomplish this, first the About your PC window must be opened on a

computer running Microsoft Windows 10. This window can be easily found

by typing about in the Windows Search. After clicking on Advanced system

settings on the right a smaller window with system properties is opened.

After clicking on Environment Variables, a new window is opened. By

selecting the Variable Path on the lower half under System Variables and

clicking on the Edit button, the environment variables can be accessed.

By clicking on New and then Browse the bin folder from within the

PostgreSQL installation directory needs to be chosen: C:\Program

Files\PostgreSQL\13\bin. Afterwards the choice is confirmed by clicking

xxi

on the OK button. After restarting all currently open Windows Powershell

or command line windows the PostgreSQL database management system

can be accessed with the command psql.

Like Apache Tomcat, the PostgreSQL server which allows access to the

databases is started and stopped by its corresponding service. By typing

services.msc in the command line or the Windows Powershell, all

Windows Services are listed. By right-clicking on the entry postresql-x64-

13 the server can be started or stopped. Since its default Startup Type is

automatic, should a web application require access to the database and the

service is not currently running it will be started automatically.

9.4.2. Setting up a Database for treeshop

As an alternative to this guide, a web page included in both web

applications, that come included with this thesis offers an easy way to

quickly copy and paste all commands. It can be accessed from:
http://localhost:8080/helloworld/support

After the installation has been accomplished, now a separate database for

the Apache Tomcat server is created. To begin with the command: psql

postgres postgres, allows access to the database management system. Psql

is the environmental variable used to communicate to the command line

that PostgreSQL is to be addressed. The following variable postgres signals

the database management that the default database postgres is to be

accessed. The repetition of the variable postgres signals the database

management system to access the default database postgres as the

superuser postgres. Afterwards the password for the superuser account,

which has been defined during the installation process needs to be typed

in.

Listing 31: PostgreSQL Start Database Management System

xxii

Using this superuser account now a new database is created, using the

command: CREATE DATABASE shop; Since the database is mainly used for an

online shop web application it is called shop.

Listing 32: PostgreSLQ Create Database shop

Afterwards a connection to the newly created database is established.

Listing 33: PostgreSQL Connect to Database Shop

Now, three tables for the web application shop be created.

Listing 34: PostgreSQL Create Table tree

Listing 35: PostgreSQL Create Table customer

Listing 36: PostgreSQL Create Table cart

Each user and tree both have a unique ID assigned to them. This is done

automatically by the sequence object available in PostgreSQL. It assigns a

unique identifier for each row of the table [154].

In the next step a unique user for Apache Tomcat is created.

Listing 37: PostgreSQL Create User cattus

xxiii

Since no schema has been defined, all previously created tables are assigned

to the schema public. The following commands grants the newly created

user the necessary rights to operate on the tables.

Listing 38: PostgreSQL Grant Rights to cattus

Finally, special permissions need to be given, so that the new user may work

on tables using sequences. Even though sequences look like fields, they are

single-row tables that require explicit permission to perform functions on

them. Each time a new row is added, a function is performed to auto

increment the sequence number, which is stored as bigint [155].

Listing 39: PostgreSQL Grant Sequence Rights tree_id

The same operation needs to be repeated for the customer table.

Listing 40: PostgreSQL Grant Sequence Rights customer_id

In the next step six example products are added to the table tree.

Listing 41: PostgreSQL Insert tree

Afterwards, three example accounts are created. All entries follow the same

password convention: the password for bigspender@quickmail.com is

bigspender.

Listing 42: PostgreSQL Insert customer

This concludes the setup process for the database.

xxiv

9.5. Debug Code

The following lines of code, written by Rony G. Flatscher can be placed at

the top and bottom of a script, creating a detailed list of exceptions that

occurred. This is particularly useful to determine problems related to

database operations.

SIGNAL ON SYNTAX

/* CODE */

RETURN

SYNTAX: -- label to jump to, if syntax condition gets raised
above
 co=condition("object") -- get condition object
 -- get Java exception chain as a Rexx string, insert "
" after LF
("0a"x)
 strChain=ppJavaExceptionChain(co)~changeStr("0a"x, "0a"x "
")
 .error~say(strChain) -- write to error stream
 say strChain -- write to output stream (generates as HTML text)
 raise propagate -- propagate exception (recreate exception in caller)
::REQUIRES "BSF.CLS" --enable Java support
Listing 43: Debug Code

9.6. MailHog

The MailHog software can be found on the following web page:

https://github.com/mailhog/MailHog By clicking on Releases, the latest

version can be downloaded. Both a 64-Bit and a 32-Bit version are available.

On the Microsoft Windows operation system, once downloaded, the file

MailHog_windows_amd64.exe / MailHog_windows_amd32.exe will open a

command prompt window on execution. As long as this window remains

open, the software is running.

After configuring Jakarta Mail to send e-mails with the SMTP server on the

localhost and port 1025, all incoming and outgoing e-mails will be processed

by MailHog. The username and password choice does not matter. The

program creates an inbox, which can be accessed by a web browser, using

the URL: http://localhost:8025/

This convenient interface allows to view e-mails from the receiver’s

perspective. Given how easily this e-mail testing environment is set up, the

author highly recommends.

https://github.com/mailhog/MailHog
http://localhost:8025/

xxv

Glossary

API Application Programming Interface

ASF Apache Software Foundation

BSF Bean Scripting Framework

BSF4ooRexx Bean Scripting Framework for Open Object Rexx

CSS Cascading Style Sheet

CGI Common Gateway Interface

DOM Document Object Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IP address Internet Protocol address

Jakarta EE Jakarta Enterprise Edition

JAR Java Archive

Java EE Java Enterprise Edition

JDBC Java Database Connectivity

JDK Java Development Kit

JNDI Java Naming and Directory Interface

JRE Java Runtime Environment

JSP Jakarta Server Pages

JSR Java Specification Request

MIME Multipurpose Internet Mail Extensions

ooRexx Open Object Rexx

OWASP Open Web Application Security Project

SSL Secure Socket Layer

xxvi

SMTP Simple Mail Transmission Protocol

SQL Structured Query Language

Taglib Tag Library

TLD Tag Library Descriptor

TLS Transport Layer Security

Tomcat Apache Tomcat Software

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAR Web Application Archive

Webapp Web Application

Windows Microsoft Windows

Figures

FIGURE 1: HTTP REQUEST [28] ... 8
FIGURE 2: HTTP RESPONSE [28] ... 9
FIGURE 3:SERVER-SIDE JAVA STACK [34] ... 10
FIGURE 4: TOMCAT_HOME DIRECTORY ... 18
FIGURE 5: APACHE COMMONS DAEMON SERVICE MANAGER .. 21
FIGURE 6: HELLWORLD.JSP IN WEB BROWSER ... 27
FIGURE 7: HELLOWORLD_EXT.JSP IN WEB BROWSER .. 31
FIGURE 8: LASTVISIT.JSP IN WEB BROWSER FIRST VISIT ... 33
FIGURE 9: LASTVISIT.JSP IN WEB BROWSER CONSECUTIVE VISIT ... 34
FIGURE 10: GREETING.JSP IN WEB BROWSER FIRST VISIT .. 35
FIGURE 11: GREETING.JSP IN WEB BROWSER CONSECUTIVE VISIT ... 36
FIGURE 12: ENTITY-RELATIONSHIP MODEL DATABASE .. 41
FIGURE 13: PRODUCTLIST.JSP IN WEB BROWSER ... 47
FIGURE 14: JSESSIONID COOKIE .. 53
FIGURE 15: TREESHOP MAIN PAGE IN WEB BROWSER .. 53
FIGURE 16: SHOPPINGCART.JSP IN WEB BROWSER ... 58
FIGURE 17: CREATENEWSLETTER.JSP IN WEB BROWSER .. 65
FIGURE 18: NEWSLETTER IN WEB BROWSER .. 70
FIGURE 19: UNSUBSCRIBE.JSP IN WEB BROWSER ... 71
FIGURE 20: TOMCAT 10 DOWNLOAD PAGE ... III
FIGURE 21: WELCOME TO APACHE TOMCAT SETUP .. IV
FIGURE 22: TOMCAT 10 SETUP LICENSE AGREEMENT .. V
FIGURE 23: TOMCAT 10 SETUP CHOOSE COMPONENTS ... VI
FIGURE 24: TOMCAT 10 SETUP CONFIGURATION ... VII
FIGURE 25: TOMCAT 10 SETUP JAVA VIRTUAL MACHINE .. VIII

xxvii

FIGURE 26: TOMCAT 10 SETUP CHOOSE INSTALL LOCATION .. VIII
FIGURE 27: COMPLETING APACHE TOMCAT SETUP .. IX
FIGURE 28: POSTGRESQL SETUP .. XI
FIGURE 29: POSTGRESQL SETUP INSTALLATION DIRECTORY ... XII
FIGURE 30: POSTGRESQL SETUP SELECT COMPONENTS ... XIII
FIGURE 31: POSTGRESQL SETUP DATA DIRECTORY ... XIV
FIGURE 32: POSTGRESQL SETUP PASSWORD .. XV
FIGURE 33: POSTGRESQL SETUP PORT ... XVI
FIGURE 34: POSTGRESQL SETUP ADVANCED OPTIONS .. XVII
FIGURE 35: POSTGRESQL PRE INSTALLATION SUMMARY .. XVIII
FIGURE 36: POSTGRESQL SETUP READY TO INSTALL .. XIX
FIGURE 37: COMPLETING THE POSTGRESQL SETUP WIZARD .. XX

Listings

LISTING 1: HELLOWORLD.JSP .. 24
LISTING 2: HELLOWORLD.JSP HTML SOURCE CODE ... 27
LISTING 3: HELLOWORLD_EXT.JSP ... 28
LISTING 4: HELLOWORLD_EXT.JSP HTML CODE .. 29
LISTING 5: LASTVISIT.JSP ... 32
LISTING 6: GREETING.JSP ... 34
LISTING 7: GREETING_EX.JSPL ::RESOURCE LOGOUTBUTTON ... 36
LISTING 8: GREETING_EXT.JSP SRC ATTRIBUTE ... 37
LISTING 9: LOGOUT.REX .. 38
LISTING 10: SERVER.XML CONTEXT ... 42
LISTING 11: CONTEXT.XML .. 44
LISTING 12: PRODUCTLIST.JSP .. 45
LISTING 13: CREATEUSER.REX JBCRYPT .. 50
LISTING 14: CREATEUSER.REX PREPARESTATEMENT .. 51
LISTING 15: MAINPAGE.REX ::ROUTINE CREATEPRODUCT ... 54
LISTING 16: MAINPAGE.REX CARTARRAY .. 55
LISTING 17: MAINPAGE.REX EDIT TABLE CART ... 55
LISTING 18: LOGIN.REX CHECKPW ... 56
LISTING 19: LOGOUT.JSP INVALIDATE ... 57
LISTING 20: SHOPPINGCART.REX CREATE GUEST CART .. 58
LISTING 21: SHOPPINGCART.REX MINUS BUTTON .. 59
LISTING 22: LINK RESOURCE FOR SUBDIRECTORY ... 60
LISTING 23: ADDPRODUCTS.HTML UPLOAD FORM ... 60
LISTING 24: WEB.XML UPLOADER SERVLET CONFIGURATION.. 61
LISTING 25: UPLOADER.JSP FILE PROCESSING .. 62
LISTING 26: MAILER.JSP CHOICEARRAY .. 65
LISTING 27: MAILER.JSP SELECT RECEIVERS ... 66
LISTING 28: MAILER.JSP CREATE MESSAGE ... 67
LISTING 29: MAILER.JSP CREATE MESSAGE CONTENT ... 68
LISTING 30: MAILER.JSP SEND MESSAGE .. 69
LISTING 31: POSTGRESQL START DATABASE MANAGEMENT SYSTEM .. XXI
LISTING 32: POSTGRESLQ CREATE DATABASE SHOP .. XXII
LISTING 33: POSTGRESQL CONNECT TO DATABASE SHOP .. XXII
LISTING 34: POSTGRESQL CREATE TABLE TREE .. XXII
LISTING 35: POSTGRESQL CREATE TABLE CUSTOMER .. XXII
LISTING 36: POSTGRESQL CREATE TABLE CART .. XXII

xxviii

LISTING 37: POSTGRESQL CREATE USER CATTUS .. XXII
LISTING 38: POSTGRESQL GRANT RIGHTS TO CATTUS .. XXIII
LISTING 39: POSTGRESQL GRANT SEQUENCE RIGHTS TREE_ID... XXIII
LISTING 40: POSTGRESQL GRANT SEQUENCE RIGHTS CUSTOMER_ID .. XXIII
LISTING 41: POSTGRESQL INSERT TREE ... XXIII
LISTING 42: POSTGRESQL INSERT CUSTOMER ... XXIII
LISTING 43: DEBUG CODE ... XXIV

References

[1] World Wide Web Consortium, "Tim Berners-Lee," World Wide Web Consortium, 16 July 2020.

[Online]. Available: https://www.w3.org/People/Berners-Lee/. [Accessed 10 September 2020].

[2] R. Fielding, J. Gettys, M. J., F. H., L. Masinter, P. Leach and T. Berners-Lee, "Hypertext Transfer

Protocol -- HTTP/1.1," Internet Engineering Task Force, June 19999. [Online]. Available:

https://tools.ietf.org/html/rfc2616. [Accessed 10 September 2020].

[3] Rexx Language Association, " About Open Object Rexx," Rexx Language Association, [Online].

Available: https://www.oorexx.org/about.html. [Accessed 26 December 2020].

[4] Jakarta Server Pages Team, "Jakarta Server Pages Specification, Version 3.0," Eclipse

Foundation, 21 October 2020. [Online]. Available:

https://jakarta.ee/specifications/pages/3.0/jakarta-server-pages-spec-3.0.html. [Accessed 10

January 2021].

[5] J. Ousterhout, "Scripting: Higher-Level Programming for the 21st Century," IEEE Compute, vol.

31, no. 03, pp. 23-30, 1998.

[6] R. Sedgewick and K. Wayne, "8.2 Compilers, Interpreters, and Emulators," Princeton

University, 24 October 2006. [Online]. Available:

https://introcs.cs.princeton.edu/java/82compiler/. [Accessed 22 September 2020].

[7] R. Toal, "Scripting Languages," Loyola Marymount University, [Online]. Available:

https://cs.lmu.edu/~ray/notes/scriptinglangs/. [Accessed 22 September 2020].

[8] J. Gosling and M. Henry, "The Java Language Environment," Oracle, May 1996. [Online].

Available: https://www.oracle.com/java/technologies/language-environment.html. [Accessed

23 September 2020].

[9] Oracle, "About the Java Technology," Oracle, [Online]. Available:

https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html. [Accessed 23

September 2020].

[10] C. Hermansen, "Using external libraries in Java," Opensource.com, 11 February 2020. [Online].

Available: https://opensource.com/article/20/2/external-libraries-java. [Accessed 26

December 2020].

xxix

[11] GeeksforGeeks, "Jar files in Java," GeeksforGeeks, 26 May 2017. [Online]. Available:

https://www.geeksforgeeks.org/jar-files-java/. [Accessed 26 December 2020].

[12] Oracle, "JSR 223: Scripting for the JavaTM Platform," Oracle, [Online]. Available:

https://jcp.org/en/jsr/detail?id=223. [Accessed 26 December 2020].

[13] Oracle, "Java Platform, Standard Edition Java Scripting Programmer's Guide," Oracle, [Online].

Available: https://docs.oracle.com/javase/10/scripting/toc.htm. [Accessed 24 September

2020].

[14] A. Fleck, "Prologue on Program Specification," University of Iowa, [Online]. Available:

http://homepage.divms.uiowa.edu/~fleck/spec.html. [Accessed 06 September 2020].

[15] Oracle, "Interface ScriptEngine," Oracle, [Online]. Available:

https://docs.oracle.com/javase/10/docs/api/javax/script/ScriptEngine.html. [Accessed 24

September 2020].

[16] J. O'Conner, "Scripting for the Java Platform," Oracle, July 2006. [Online]. Available:

https://www.oracle.com/technical-resources/articles/javase/scripting.html. [Accessed 04

January 2021].

[17] GeeksforGeeks, "JavaBean class in Java," GeeksforGeeks, 14 September 2017. [Online].

Available: https://www.geeksforgeeks.org/javabean-class-java/. [Accessed 25 September

2020].

[18] Apache Software Foundation, "BSF FAQ," Apache Software Foundation, 17 October 2011.

[Online]. Available: https://commons.apache.org/proper/commons-bsf/faq.html. [Accessed

25 September 2020].

[19] Apache Software Foundation, "BSF Manual," Apache Software Foundation, 17 October 2011.

[Online]. Available: https://commons.apache.org/proper/commons-bsf/manual.html.

[Accessed 25 September 2020].

[20] S. Weerawarana, M. J. Duftler, S. Ruby, O. Gruber, D. Schwarz and R. G. Flatscher, "Class

BSFManager," 13 September 2008. [Online]. Available:

http://wi.wu.ac.at:8002/rgf/rexx/bsf4rexx/current/docs/docs.apache.bsf/org/apache/bsf/BSF

Manager.html. [Accessed 25 September 2020].

[21] Apache Software Foundation, "BSF About," Apache Software Foundation, 2011 October 2011.

[Online]. Available: https://commons.apache.org/proper/commons-bsf/index.html. [Accessed

25 September 2020].

[22] R. G. Flatscher, Introduction to REXX and ooRexx, Vienna: Facultas, 2013.

[23] R. G. Flatscher, "Java Bean Scripting With Rexx," in Proceedings of the „12th International Rexx

Symposium“, Raleigh, North Carolina, USA, 2001.

[24] R. G. Flatscher, "The Augsburg Version of BSF4Rexx," in Proceedings of the „14th International

Rexx Symposium", Raleigh, NorthCarolina, USA, 2003.

xxx

[25] R. G. Flatscher, "The 2019 Edition of BSF4ooRexx," in Proceedings of the "2019 International

RexxLA Symposium", Hursley, Great Britain, 2019.

[26] R. G. Flatscher, "Camouflaging Java as Object REXX," in Proceedings of the "2004 International

Rexx Symposium", Research Triangle Park, North Carolina, 2004.

[27] The Editors of Encyclopaedia Britannica, " Protocol," Encyclopaedia Britannica, 31 August

2018. [Online]. Available: https://www.britannica.com/technology/protocol-computer-

science. [Accessed 08 September 2020].

[28] H.-C. Chua, "HTTP (HyperText Transfer Protocol)," Nanyang Technological University, 20

October 2009. [Online]. Available:

https://personal.ntu.edu.sg/ehchua/programming/webprogramming/HTTP_Basics.html.

[Accessed 07 January 2021].

[29] World Wide Web Consortium, "HTML 5.2," World Wide Web Consortium, 14 December 2017.

[Online]. Available: https://www.w3.org/TR/html52/. [Accessed 27 December 2020].

[30] w3schools, "HTML Introduction," w3schools, [Online]. Available:

https://www.w3schools.com/html/html_intro.asp. [Accessed 27 December 2020].

[31] H. W. Lie and B. Bos, "Cascading Style Sheets, level 1," World Wide Web Consortium, 17

December 1996. [Online]. Available: https://www.w3.org/TR/REC-CSS1-961217. [Accessed 15

December 2020].

[32] H.-C. Chua, "Java Server-Side Programming," Nanyang Technological University, October 2012.

[Online]. Available:

https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaServlets.html. [Accessed 01

September 2020].

[33] Oracle, "Java Servlet Technology Overview," Oracle, [Online]. Available:

https://www.oracle.com/java/technologies/servlet-technology.html. [Accessed 02 September

2020].

[34] M. Tyson, "What are Java servlets? Request handling for Java web applications," InfoWorld, 17

October 2018. [Online]. Available: https://www.infoworld.com/article/3313114/what-is-a-

java-servlet-request-handling-for-java-web-applications.html. [Accessed 02 September 2020].

[35] A. Singh, "Introduction to Java Servlets," GeeksforGeeks, 23 October 2019. [Online]. Available:

https://www.geeksforgeeks.org/introduction-java-servlets/. [Accessed 02 September 2020].

[36] Jakarta Servlet Team, "Jakarta Servlet Specification, Version 5.0," Eclipse Foundation, 07

September 2020. [Online]. Available: https://jakarta.ee/specifications/servlet/5.0/jakarta-

servlet-spec-5.0.html. [Accessed 10 January 2021].

[37] N. Freed and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part One: Format

of Internet Message Bodies," Internet Engineering Task Force, November 1996. [Online].

Available: https://tools.ietf.org/html/rfc2045. [Accessed 06 September 2020].

xxxi

[38] Eclipse Foundation, "Class HttpServlet," Eclipse Foundation, [Online]. Available:

https://jakarta.ee/specifications/platform/9/apidocs/jakarta/servlet/http/HttpServlet.html.

[Accessed 02 September 2020].

[39] Eclipse Foundation, "Interface Servlet," Eclipse Foundation, [Online]. Available:

https://jakarta.ee/specifications/platform/9/apidocs/jakarta/servlet/servlet. [Accessed 02

September 2020].

[40] M. Tyson, "What is JSP? Introduction to JavaServer Pages," InfoWorld, 29 January 2019.

[Online]. Available: https://www.infoworld.com/article/3336161/what-is-jsp-introduction-to-

javaserver-pages.html. [Accessed 02 September 2020].

[41] Oracle, "JSP Scriptlets," Oracle, [Online]. Available:

https://docs.oracle.com/javaee/5/tutorial/doc/bnaou.html. [Accessed 28 December 2020].

[42] Oracle, "JSP Tag Libraries," Oracle, [Online]. Available:

https://docs.oracle.com/cd/B14099_19/web.1012/b14014/taglibs.htm#i1012403. [Accessed

28 December 2020].

[43] S. Ryabenkiy, Java Web Scripting and Apache Tomcat, Vienna: Vienna University of Economics

and Business, 2010.

[44] M. Tyson, "What is Tomcat? The original Java servlet container," InfoWorld, 19 December

2019. [Online]. Available: https://www.infoworld.com/article/3510460/what-is-apache-

tomcat-the-original-java-servlet-container.html. [Accessed 28 December 2020].

[45] TEDBlog, "James Duncan Davidson," TEDBlog, [Online]. Available:

https://blog.ted.com/author/duncandavidson/. [Accessed 01 September 2020].

[46] Apache Software Foundation, "The Tomcat Story," Apache Software Foundation, [Online].

Available: https://tomcat.apache.org/heritage.html. [Accessed 01 September 2020].

[47] MuleSoft, "Meet Tomcat Catalina," MuleSoft, [Online]. Available:

https://www.mulesoft.com/tcat/tomcat-catalina. [Accessed 28 December 2020].

[48] Apache Software Foundation, "Introduction," Apache Software Foundation, 03 December

2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/introduction.html.

[Accessed 28 December 2020].

[49] Wikipedians, "Apache Tomcat," Wikipedia, 13 December 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Apache_Tomcat. [Accessed 28 December 2020].

[50] Apache Software Foundation, "The Coyote HTTP/1.1 Connector," Apache Software

Foundation, [Online]. Available: https://tomcat.apache.org/tomcat-4.1-

doc/config/coyote.html. [Accessed 28 December 2020].

[51] Apache Software Foundation, "Apache HTTP Server HowTo," Apache Software Foundation, 09

March 2020. [Online]. Available: https://tomcat.apache.org/connectors-

doc/webserver_howto/apache.html. [Accessed 28 December 2020].

xxxii

[52] P. Manh, "The different between Web server, Web container and Application server," GitHub,

01 April 2020. [Online]. Available: https://ducmanhphan.github.io/2020-04-01-The-difference-

between-web-server-web-container-application-server/. [Accessed 02 September 2020].

[53] Opensource.com, "What is open source?," Opensource.com, [Online]. Available:

https://opensource.com/resources/what-open-source. [Accessed 28 December 2020].

[54] Opensource.org, "Frequently Answered Questions," Opensource.org, [Online]. Available:

https://opensource.org/faq. [Accessed 28 December 2020].

[55] Apache Software Foundation, "What is the ASF?," Apache Software Foundation, [Online].

Available: https://www.apache.org/foundation/. [Accessed 01 September 2020].

[56] Apache Software Foundation, "Apache Tomcat," Apache Software Foundation, [Online].

Available: https://tomcat.apache.org/. [Accessed 01 September 2020].

[57] Apache Software Foundation, "Apache License, Version 2.0," Apache Software Foundation,

[Online]. Available: https://www.apache.org/licenses/LICENSE-2.0. [Accessed 01 September

2020].

[58] Eclipse Foundation, "About the Eclipse Foundation," Eclipse Foundation, [Online]. Available:

https://www.eclipse.org/org/. [Accessed 06 September 2020].

[59] Eclipse Foundation, "Explore Our Members," Eclipse Foundation, [Online]. Available:

https://www.eclipse.org/membership/exploreMembership.php. [Accessed 06 September

2020].

[60] A. Tijms, "Transition from Java EE to Jakarta EE," Oracle, 27 February 2020. [Online]. Available:

https://blogs.oracle.com/javamagazine/transition-from-java-ee-to-jakarta-ee. [Accessed 02

September 2020].

[61] Oracle, "Java Documentation," Oracle, [Online]. Available:

https://docs.oracle.com/en/java/index.html. [Accessed 06 September 2020].

[62] R. Monson-Haefel, "TomEE vs. Tomcat," Tomitribe, 05 December 2019. [Online]. Available:

https://www.tomitribe.com/blog/tomee-vs-tomcat/. [Accessed 28 December 2020].

[63] Apache Software Foundation, "Tomcat 10 Software Downloads," Apache Software

Foundation, [Online]. Available: https://tomcat.apache.org/download-10.cgi. [Accessed 28

December 2020].

[64] R. G. Flatscher, ""RexxScript" – Rexx Scripts Hosted and Evaluated by Java (Package

javax.script)," in Proceedings of the "The 2017 International Rexx Symposium", Amsterdam,

The Netherlands, 2017.

[65] Cloudflare, "What do client side and server side mean? | Client side vs. server side,"

Cloudflare, [Online]. Available:

https://www.cloudflare.com/learning/serverless/glossary/client-side-vs-server-side/.

[Accessed 06 January 2021].

xxxiii

[66] MuleSoft, "Tomcat Configuration - A Step By Step Guide," MuleSoft, [Online]. Available:

https://www.mulesoft.com/tcat/tomcat-configuration. [Accessed 28 December 2020].

[67] Apache Software Foundation, "Application Developer's Guide," Apache Software Foundation,

03 December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-

doc/appdev/deployment.html. [Accessed 10 December 2020].

[68] G. Shachor, "Tomcat 3.3 User's Guide," Apache Software Foundation, [Online]. Available:

https://tomcat.apache.org/tomcat-3.3-doc/tomcat-ug.html#directory_structure. [Accessed 28

December 2020].

[69] Microfocus, "Deploying and Running Your Application," Microfocus, [Online]. Available:

https://supportline.microfocus.com/documentation/books/sx22sp1/pidepl.htm. [Accessed 29

December 2020].

[70] JavaTpoint, "War File," JavaTpoint, [Online]. Available: https://www.javatpoint.com/war-file.

[Accessed 29 December 2020].

[71] Baeldung, "How to Deploy a WAR File to Tomcat," Baeldung, 12 February 2020. [Online].

Available: https://www.baeldung.com/tomcat-deploy-war. [Accessed 29 December 2020].

[72] Uniface, "Creating and Deploying a Web Application WAR File," Uniface, [Online]. Available:

https://u.uniface.info/docs/1000/uniface/webApps/webDeployment/Prepare_your_Web_env

ironment.htm. [Accessed 29 December 2020].

[73] FileInfo, ".EAR File Extension," FileInfo, 22 March 2019. [Online]. Available:

https://fileinfo.com/extension/ear. [Accessed 29 December 2020].

[74] Microsoft, "Introduction to Windows Service Applications," Microsoft, 30 March 2017.

[Online]. Available: https://docs.microsoft.com/en-us/dotnet/framework/windows-

services/introduction-to-windows-service-applications. [Accessed 18 September 2020].

[75] A. Sharma, "What is Local Host?," GeeksforGeeks, 09 August 2019. [Online]. Available:

https://www.geeksforgeeks.org/what-is-local-host/. [Accessed 13 September 2020].

[76] K. Vijay Kulkarni, "14 common network ports you should know," Red Hat, 04 October 2018.

[Online]. Available: https://opensource.com/article/18/10/common-network-ports. [Accessed

17 September 2020].

[77] Apache Software Foundation, "Manager App How-To," Apache Software Foundation, 03

December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/manager-

howto.html. [Accessed 29 December 2020].

[78] MuleSoft, "The Tomcat Web app Quick Reference Guide," MuleSoft, [Online]. Available:

https://www.mulesoft.com/tcat/tomcat-webapp. [Accessed 29 December 2020].

[79] R. Nazarov, "Tomcat web.xml Configuration Example," Java Code Geeks, 18 March 2015.

[Online]. Available: https://examples.javacodegeeks.com/enterprise-java/tomcat/tomcat-

web-xml-configuration-example/. [Accessed 10 December 2020].

xxxiv

[80] Eclipse Foundation, "Interface HttpSession," Eclipse Foundation, 2019. [Online]. Available:

https://jakarta.ee/specifications/servlet/4.0/apidocs/javax/servlet/http/HttpSession.html.

[Accessed 21 October 2020].

[81] R. Ishida, "Character encodings for beginners," W3C, 16 April 2015. [Online]. Available:

https://www.w3.org/International/questions/qa-what-is-encoding. [Accessed 21 October

2020].

[82] O. Thereaux, "Don't forget to add a doctype," W3C, 20 August 2002. [Online]. Available:

https://www.w3.org/QA/Tips/Doctype. [Accessed 22 October 2020].

[83] webhint, "Use charset `utf-8`," webhint, [Online]. Available: https://webhint.io/docs/user-

guide/hints/hint-meta-charset-utf-8/. [Accessed 14 December 2020].

[84] Maggie, "Why is <meta charset="utf-8"> important?," DEV, 19 October 2020. [Online].

Available: https://dev.to/maggiecodes_/why-is-lt-meta-charset-utf-8-gt-important-59hl.

[Accessed 14 December 2020].

[85] R. G. Flatscher, "SourceForge BSF4ooRexx Taglibs Readme.md," 24 November 2020. [Online].

Available: https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/rgf/taglibs/beta/.

[Accessed 11 December 2020].

[86] N. Lengyel, BSF4ooRexx: JSP with javax.script Languages, Vienna, Austria: Vienna University of

Economics and Business, 2020.

[87] C. Singh, "Jsp Implicit Objects," BeginnersBook, [Online]. Available:

https://beginnersbook.com/2013/11/jsp-implicit-objects/. [Accessed 22 October 2020].

[88] Apache Software Foundation, "Class JspWriter," Apache Software Foundation, [Online].

Available: https://tomcat.apache.org/tomcat-7.0-doc/jspapi/javax/servlet/jsp/JspWriter.html.

[Accessed 22 October 2020].

[89] W3Schools, "HTML <link> Tag," W3Schools, [Online]. Available:

https://www.w3schools.com/tags/tag_link.asp. [Accessed 14 December 2020].

[90] W3Schools, "HTML File Paths," W3Schools, [Online]. Available:

https://www.w3schools.com/html/html_filepaths.asp. [Accessed 14 December 2020].

[91] B. Bos, T. Çelik, I. Hickson and H. W. Lie, "Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)

Specification," 12 April 2016. [Online]. Available: https://www.w3.org/TR/CSS2/. [Accessed 15

December 2020].

[92] FileCloud, "Tech tip: How to do hard refresh in Chrome, Firefox and IE?," FileCloud, 06 March

2015. [Online]. Available: https://www.getfilecloud.com/blog/2015/03/tech-tip-how-to-do-

hard-refresh-in-browsers/. [Accessed 04 January 2021].

[93] R. G. Flatscher, "External BSF4ooRexx Functions - Overview," 08 December 2010. [Online].

Available: http://wi.wu-

wien.ac.at:8002/rgf/rexx/bsf4oorexx/current/additionalResources/refcardBSF4ooRexx.pdf.

[Accessed 14 December 2020].

xxxv

[94] Javatpoint, "welcome-file-list in web.xml," Javatpoint, [Online]. Available:

https://www.javatpoint.com/welcome-file-list. [Accessed 17 December 2020].

[95] A. Barth, "HTTP State Management Mechanism," April 2011. [Online]. Available:

https://tools.ietf.org/html/rfc6265. [Accessed 27 September 2020].

[96] Eclipse Foundation, "Interface HttpServletRequest," Eclipse Foundation, [Online]. Available:

https://jakarta.ee/specifications/servlet/4.0/apidocs/javax/servlet/http/httpservletrequest.

[Accessed 22 October 2020].

[97] Eclipse Foundation, "Class Cookie," Eclipse Foundation, [Online]. Available:

https://jakarta.ee/specifications/servlet/4.0/apidocs/javax/servlet/http/Cookie.html.

[Accessed 22 October 2020].

[98] W. D. Ashley, R. G. Flatscher, M. Hessling, R. McGuire, M. Miesfeld, L. Peedin, R. Tammer and

J. Wolfers, "Built-in Functions," Rexx Language Association, 14 August 2009. [Online].

Available: https://www.oorexx.org/docs/rexxref/x23579.htm. [Accessed 22 October 2020].

[99] D. Ragget, A. Le Hors and I. Jacobs, "HTML 4.01 Specification," World Wide Web Consortium,

24 December 1999. [Online]. Available: https://www.w3.org/TR/html401/. [Accessed 14

December 2020].

[100

]

F. Bohórquez, "HTML Forms: The Action Attribute," Career Karma, 12 August 2020. [Online].

Available: https://careerkarma.com/blog/html-form-action/. [Accessed 16 December 2020].

[101

]

W3Schools, "HTML <label> Tag," W3Schools, [Online]. Available:

https://www.w3schools.com/tags/tag_label.asp. [Accessed 04 January 2021].

[102

]

w3schools, "HTML <input> required Attribute," w3schools, [Online]. Available:

https://www.w3schools.com/tags/att_input_required.asp. [Accessed 20 December 2020].

[103

]

R. G. Flatscher and G. Müller, "ooRexx 5 Yielding Swiss Army Knife Usability," in The

Proceedings of the Rexx Symposium for Developers and Users, Hursley, Great Britain, 2019.

[104

]

baeldung, "Handling Cookies and a Session in a Java Servle," baeldung, 28 February 2020.

[Online]. Available: https://www.baeldung.com/java-servlet-cookies-session. [Accessed 23

October 2020].

[105

]

M. Tyson, "What is JDBC? Introduction to Java Database Connectivity," InfoWorld, 11 April

2011. [Online]. Available: https://www.infoworld.com/article/3388036/what-is-jdbc-

introduction-to-java-database-connectivity.html. [Accessed 12 November 2020].

[106

]

M. Aboagye, "Improve database performance with connection pooling," Stack Overflow, 14

October 2020. [Online]. Available: https://stackoverflow.blog/2020/10/14/improve-database-

performance-with-connection-pooling/. [Accessed 15 November 2020].

[107

]

Apache Software Foundation, "JNDI Datasource How-To," Apache Software Foundation, 06

October 2020. [Online]. Available: https://tomcat.apache.org/tomcat-9.0-doc/jndi-

datasource-examples-howto.html. [Accessed 12 November 2020].

xxxvi

[108

]

M. van Steen and A. S. Tanenbaum, "A brief introduction to distributed systems," Computing,

vol. 98, no. 10, pp. 967-1009, 2016.

[109

]

F. T. Marchese, "Naming," Pace University Seidenberg School of CSIS, [Online]. Available:

http://csis.pace.edu/~marchese/CS865/Lectures/Chap5/Chapter5.htm. [Accessed 11

November 2020].

[110

]

T. Sundsted, "JNDI overview, Part 2: An introduction to directory services," InfoWorld,

[Online]. Available: https://www.infoworld.com/article/2076901/jndi-overview--part-2--an-

introduction-to-directory-services.html. [Accessed 11 November 2020].

[111

]

S. Claridge, "Serving static content (including web pages) from outside of the WAR using

Apache Tomcat," More Of Less, 04 April 2014. [Online]. Available:

https://www.moreofless.co.uk/static-content-web-pages-images-tomcat-outside-war/.

[Accessed 21 December 2020].

[112

]

Apache Software Foundation, "Class Loader How-To," Apache Software Foundation, 03

December 2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/class-loader-

howto.html. [Accessed 10 December 2020].

[113

]

Apache Software Foundation, "JNDI Resources How-To," Apache Software Foundation, 06

October 2020. [Online]. Available: https://tomcat.apache.org/tomcat-9.0-doc/jndi-resources-

howto.html. [Accessed 12 November 2020].

[114

]

T. Sundsted, "JNDI overview, Part 1: An introduction to naming services," InfoWorld, 01

January 2000. [Online]. Available: https://www.infoworld.com/article/2076888/jndi-overview-

-part-1--an-introduction-to-naming-services.html. [Accessed 11 November 2020].

[115

]

Oracle, "Interface Statement," Oracle, [Online]. Available:

https://cr.openjdk.java.net/~iris/se/15/latestSpec/api/java.sql/java/sql/Statement.html.

[Accessed 18 November 2020].

[116

]

Oracle, "Interface ResultSet," Oracle, [Online]. Available:

https://cr.openjdk.java.net/~iris/se/15/latestSpec/api/java.sql/java/sql/ResultSet.html.

[Accessed 18 November 2020].

[117

]

J. Holý and M. Mære, "JDBC: What resources you have to close and when?," DZone, 13

February 2013. [Online]. Available: https://dzone.com/articles/jdbc-what-resources-you-have.

[Accessed 20 December 2020].

[118

]

European Union, "Data protection and online privacy," European Union, 09 March 2020.

[Online]. Available: https://europa.eu/youreurope/citizens/consumers/internet-

telecoms/data-protection-online-privacy/index_en.htm. [Accessed 25 December 2020].

[119

]

A. Beylkin, "Opt in checkboxes & consent for email marketing," Words on Marketing, [Online].

Available: https://www.amandabeylkin.com/marketing-blog/opt-in-checkboxes-consent-

email-marketing/. [Accessed 25 December 2020].

xxxvii

[120

]

R. Degges, "Everything You Ever Wanted to Know About Secure HTML Forms," Twilio, 30

September 2017. [Online]. Available: https://www.twilio.com/blog/2017/09/everything-you-

ever-wanted-to-know-about-secure.html-forms.html. [Accessed 18 November 2020].

[121

]

G. Barré, "How to store a password in a web application?," Meziantou's Blog, 17 June 2019.

[Online]. Available: https://www.meziantou.net/how-to-store-a-password-in-a-web-

application.htm. [Accessed 19 November 2020].

[122

]

H. Qureshi, "Hash Functions," Nakamoto, 29 December 2019. [Online]. Available:

https://nakamoto.com/hash-functions/. [Accessed 19 November 2020].

[123

]

OWASP, "Password Storage Cheat Sheet," OWASP, [Online]. Available:

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pass

word-hashing-algorithms. [Accessed 20 November 2020].

[124

]

N. Provos and D. Mazière, "A Future-Adaptable Password Scheme," in Proceedings of the

FREENIX Track:1999 USENIX Annual Technical Conference, Monterey, California, USA, 1999.

[125

]

OWASP, "OWASP Top Ten," OWASP, [Online]. Available: https://owasp.org/www-project-top-

ten/. [Accessed 18 November 2020].

[126

]

Z. Su and G. Wassermann, "The Essence of Command Injection Attacks in Web Application," in

Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, Charleston, South Carolina, 2006.

[127

]

P. Kumar, "JDBC Statement vs PreparedStatement – SQL Injection Example," JournalDev,

[Online]. Available: https://www.journaldev.com/2489/jdbc-statement-vs-

preparedstatement-sql-injection-example. [Accessed 18 November 2020].

[128

]

B. Brumm, "How to Escape Single Quotes in SQL," Database Star, 01 May 2017. [Online].

Available: https://www.databasestar.com/sql-escape-single-quote/. [Accessed 18 November

2020].

[129

]

Cloudflare, "What Is HTTPS?," Cloudflare, [Online]. Available:

https://www.cloudflare.com/learning/ssl/what-is-https/. [Accessed 19 November 2020].

[130

]

Guru99, "Difference between Cookie and Session," Guru99, [Online]. Available:

https://www.guru99.com/difference-between-cookie-session.html. [Accessed 02 January

2021].

[131

]

Pankaj, "Session Management in Java – HttpServlet, Cookies, URL Rewriting," JournalDev,

[Online]. Available: https://www.journaldev.com/1907/java-session-management-servlet-

httpsession-url-rewriting. [Accessed 20 December 2020].

[132

]

JavaTPoint, "https://www.javatpoint.com/http-session-in-session-tracking," JavaTPoint,

[Online]. Available: https://www.javatpoint.com/http-session-in-session-tracking. [Accessed

20 December 2020].

xxxviii

[133

]

N. H. Minh, "How to configure session timeout in Tomcat," CodeJava, 06 August 2019.

[Online]. Available: https://www.codejava.net/servers/tomcat/how-to-configure-session-

timeout-in-tomcat. [Accessed 20 December 2020].

[134

]

W3Schools, "HTML src Attribute," W3Schools, [Online]. Available:

https://www.w3schools.com/tags/att_img_src.asp. [Accessed 21 December 2020].

[135

]

S. Kamani, "Web security essentials - Sessions and cookies," { Soham Kamani }, 08 January

2017. [Online]. Available: https://www.sohamkamani.com/blog/2017/01/08/web-security-

session-cookies/. [Accessed 03 January 2021].

[136

]

C. Broadley, "Form Enctype HTML Code: Here’s How It Specifies Form Encoding Type,"

HTML.com, [Online]. Available: https://html.com/attributes/form-enctype/. [Accessed 23

December 2020].

[137

]

Oracle, " Creating and Configuring JSPs," Oracle, [Online]. Available:

https://docs.oracle.com/cd/E13222_01/wls/docs92/webapp/configurejsp.html. [Accessed 24

December 2020].

[138

]

Guru99, "JSP File Upload & File Download Program Examples," Guru99, [Online]. Available:

https://www.guru99.com/jsp-file-upload-download.html. [Accessed 24 December 2020].

[139

]

Apache Software Foundation, "Annotation Type MultipartConfig," Apache Software

Foundation, [Online]. Available: https://tomcat.apache.org/tomcat-10.0-

doc/servletapi/jakarta/servlet/annotation/MultipartConfig.html. [Accessed 24 December

2020].

[140

]

Eclipse Foundation, "Uploading Files with Jakarta Servlet Technology," Eclipse Foundation,

[Online]. Available: https://eclipse-ee4j.github.io/jakartaee-tutorial/servlets011.html.

[Accessed 24 December 2020].

[141

]

N. H. Minh, "Java File Upload Example with Servlet 3.0 API," CodeJava, 27 June 2019. [Online].

Available: https://www.codejava.net/java-ee/servlet/java-file-upload-example-with-servlet-

30-api. [Accessed 24 December 2020].

[142

]

L. Hubmaier, Tomcat Web Server: CGI vs. Servlet, Vienna Austria: Vienna University of

Economics and Business, 2017.

[143

]

Apache Software Foundation, "CGI How To," Apache Software Foundation, 03 December

2020. [Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/cgi-howto.html.

[Accessed 06 January 2021].

[144

]

Eclipse Foundation, "Jakarta Mail FAQ," Eclipse Foundation, [Online]. Available:

https://eclipse-ee4j.github.io/mail/FAQ#1. [Accessed 24 December 2020].

[145

]

The Eclipse Foundation, "Jakarta Activation," The Eclipse Foundation, [Online]. Available:

https://eclipse-ee4j.github.io/jaf/. [Accessed 24 December 2020].

xxxix

[146

]

S. Kandula, "Example on getParameterValues() method of Servlet Request," Java4s, 28 January

2013. [Online]. Available: https://www.java4s.com/java-servlet-tutorials/example-on-

getparametervalues-method-of-servlet-request/. [Accessed 24 December 2020].

[147

]

GeeksforGeeks, "Properties Class in Java," GeeksforGeeks, 24 November 2020. [Online].

Available: https://www.geeksforgeeks.org/java-util-properties-class-java/. [Accessed 24

December 2020].

[148

]

G. Mayer, SCRIPTING THE ODF TOOLKIT IN PRACTICAL USE, Vienna, Austria: Vienna University

of Economics and Business, 2012.

[149

]

Tutorials Point, "JavaMail API - Core Classes," Tutorials Point, [Online]. Available:

https://www.tutorialspoint.com/javamail_api/javamail_api_core_classes.htm. [Accessed 24

December 2020].

[150

]

Eclipse Foundation, "Uses of Class jakarta.mail.Message.RecipientType," Eclipse Foundation,

[Online]. Available: https://jakarta.ee/specifications/mail/2.0/apidocs/jakarta/mail/class-

use/message.recipienttype. [Accessed 24 December 2020].

[151

]

R. Kumar, "How to Create VirtualHost in Tomcat 9/8/7," TecAdmin, [Online]. Available:

https://tecadmin.net/create-virtualhost-in-tomcat/. [Accessed 12 September 2020].

[152

]

Apache Software Foundation, "The Server Component," Apache Software Foundation,

[Online]. Available: https://tomcat.apache.org/tomcat-10.0-doc/config/server.html. [Accessed

10 December 2020].

[153

]

The PostgreSQL Global Development Group, "23.1. Locale Support," The PostgreSQL Global

Development Group, [Online]. Available:

https://www.postgresql.org/docs/current/locale.html. [Accessed 09 December 2020].

[154

]

The PostgreSQL Global Development Group, "9.17. Sequence Manipulation Functions," The

PostgreSQL Global Development Group, [Online]. Available:

https://www.postgresql.org/docs/current/functions-sequence.html. [Accessed 18 December

2020].

[155

]

S. Weiss, "error handling: permission denied for sequence _id_seq…," /* Code Comments */,

20 November 2018. [Online]. Available: https://stephencharlesweiss.com/20181120-error-

handling-permission-denied-for-sequence-_id_seq/. [Accessed 18 December 2020].

Images Used

Background, by Robert Balog: https://pixabay.com/photos/landscape-

nature-forest-fog-misty-975091/

Oak, by Kevan Craft: https://pixabay.com/photos/tree-oak-landscape-
view-field-402953/

https://pixabay.com/photos/landscape-nature-forest-fog-misty-975091/
https://pixabay.com/photos/landscape-nature-forest-fog-misty-975091/
https://pixabay.com/photos/tree-oak-landscape-view-field-402953/
https://pixabay.com/photos/tree-oak-landscape-view-field-402953/

xl

Birch, by Анатолий Стафичук: https://pixabay.com/photos/summer-

landscape-background-dawn-2913409/

Willow, by Mabel Amber: https://pixabay.com/photos/weeping-willow-
pond-water-swan-4334489/

Beech, by Couleur: https://pixabay.com/photos/tree-beech-deciduous-

tree-old-tree-3601155/

Pine, by Szabolcs Molnar: https://pixabay.com/photos/pine-forest-pine-
trees-forest-pine-5572944/

Maple, by Free-Photos: https://pixabay.com/photos/maple-autumn-season-
fall-foliage-984420/

https://pixabay.com/photos/summer-landscape-background-dawn-2913409/
https://pixabay.com/photos/summer-landscape-background-dawn-2913409/
https://pixabay.com/photos/weeping-willow-pond-water-swan-4334489/
https://pixabay.com/photos/weeping-willow-pond-water-swan-4334489/
https://pixabay.com/photos/tree-beech-deciduous-tree-old-tree-3601155/
https://pixabay.com/photos/tree-beech-deciduous-tree-old-tree-3601155/
https://pixabay.com/photos/pine-forest-pine-trees-forest-pine-5572944/
https://pixabay.com/photos/pine-forest-pine-trees-forest-pine-5572944/
https://pixabay.com/photos/maple-autumn-season-fall-foliage-984420/
https://pixabay.com/photos/maple-autumn-season-fall-foliage-984420/

	1. Introduction
	2. Technologies
	2.1. System Programming Languages and Scripting Programming Languages
	2.2. Java
	2.3. Java and Scripting Languages
	2.3.1. JSR 223
	2.3.2. Bean Scripting Framework

	2.4. Open Object Rexx
	2.5. Bean Scripting Framework for Open Object Rexx
	2.6. Hypertext Transfer Protocol
	2.7. Hypertext Markup Language
	2.8. Jakarta Servlets
	2.9. Jakarta Server Pages
	2.10. Apache Tomcat
	2.11. Open-Source Software
	2.11.1 The Apache Foundation
	2.11.2 The Eclipse Foundation, Jakarta Namespace

	2.12. Putting it All Together

	3. Apache Tomcat Fundamentals
	3.1. TOMCAT_HOME
	3.2. Deploying Web Applications
	3.4. Starting Tomcat
	3.5. Tomcat Manager

	4. Introducing web applications /helloworld
	4.1. Web Application Architecture
	4.2. Introducing Jakarta Server Pages /helloworld/helloworld.jsp
	4.2.1. JSP Directives
	4.2.2. JSP Content

	4.3. BSF Taglib, Styling, Expressions /helloworld/helloworld_ext.jsp
	4.4. Welcome Files /helloworld/index.html
	4.5. An Introduction to Cookies /helloworld/lastvisit.jsp
	4.6. Combining User Input and Cookies /helloworld/greeting.jsp
	4.7. Deleting Cookies, External Scripts /helloworld/greeting_ext.jsp

	5. Database Connection
	5.1. Java Database Connectivity
	5.2. Java Naming and Directory Interface

	6. E-Commerce Example /treeshop
	6.1. Setup
	6.1.1. Serving Static Content
	6.1.2. Database Configuration
	6.1.3. Tomcat’s Handling of .jar Files

	6.2. Reading Data /treeshop/productlist.jsp
	6.3. Writing Data /treeshop/signup.jsp
	6.3.1. get and post Methods
	6.3.2. Securely Storing Passwords
	6.3.3. SQL Injection
	6.3.4. Hypertext Transfer Protocol Secure

	6.4. Creating a Dynamic Web Page, Sessions /treeshop/index.jsp
	6.4.1. mainpage.rex
	6.4.2. userheader.rex

	6.5. Logging In /treeshop/login.jsp
	6.6. Invalidating a Session /treeshop/logout.jsp
	6.7. Accessing the Shopping Cart /treeshop/shoppingcart.jsp
	6.8. Concluding the Purchase Process /treeshop/checkout.jsp

	7. Advanced examples /treeshop/admin
	7.1. Uploading Files /treeshop/admin/addproducts.html
	7.1.1. Upload Servlet /upload

	7.2. Common Gateway Interface
	7.3. Sending E-Mails /treeshop/admin/sendnewsletter.jsp
	7.3.1. Sending and Receiving E-mails with MailHog /mailer

	7.4. Unsubscribing from E-mails /treeshop/admin/unsubscribe.jsp

	8. Conclusion
	9. Appendix
	9.1. Prerequisites
	9.1.1. Software required to begin
	9.1.2. Software required for advanced examples:

	9.2. Tomcat Installation Guide
	9.3. Tomcat 9
	9.4. PostgreSQL
	9.4.1. Installation
	9.4.2. Setting up a Database for treeshop

	9.5. Debug Code
	9.6. MailHog

	Glossary
	Figures
	Listings
	References
	Images Used

